Description	Weste	Mass from	Maes of	Total mase	% of	Conc	entratic	n in	Recalculated		
rarametei	Streem	Mass from Bulk Analysie	Waste Stream	of parameter	mass of	We	st Qua	пу	Range in East		st
l,		(avg)	in West Quarry		parameter	Landt	ill Leac	:hate	Quarr	y leach	ate
	l	(ma/ka)	(kg)	(mg)	(%)	During	Recirc u	ulation	conc	entratic	nc
					<u></u>	(min)	<u> </u>	(max)	(min)	<u>(</u>	nax)
Ammonia						(average	" a -	(a	verage)	24
	AMW	38	1532881	58249478	3	23	-	213	3	-	31
	BOF	135	815766	110128410	7			l	ł	00	
	CONS	69	1071819	73955511	4	1	162	ł	l	23	
	Al Proc.	8270	173659	1436159930	86			ì	l		
		1		16/8493329	ł	1		1			
<u>Chioride</u>	A	105	1533991	283582085	n	2210	-	10400	34	-	161
		C01 991	815766	153364009	ŏ			• •	.		
		740	1071819	793146060	1 1		7508			116	
	Al Proc	450000	173659	78146550000	98.5	1	-				
				79376643053	1	1					
TKN					Į	1			-		
******	AMW	540	1532881	827755740	22	102	-	221	51	-	110
	BOF	405	815766	330385230	9		4		1	07	
	CONS	650	1071819	696682350	19	1	174			0/	
	Al Proc.	10800	173659	1875517200	50	1					
		1	1	3/30340520	1	1					
<u>Sodium</u>		0510	1500004	9847521910	R	1320	-	6050	161	-	739
	AMW	2510	1002001	1001/00/000	2						. =
		1338	- 1071810	956062548	2		5154		1	629	
	AL Prop	244000	173659	42372796000	88	1			1		
	AIPIUG.			48267884766	1						
Fluoride		1	1		1	1			1		
	AMW	14	1532881	21460334	33	1.2	-	2.7	0.6	-	1.5
	BOF	9	815766	7341894	11	1					
ł	CONS	5.5	1071819	5895004.5	9	1	1.85			1.0	
1	Al Proc.	170	173659	29522030	46				1		
				64219262.5	1	1					
<u>Aluminun</u>	מ			17007070070	05		-	0 F	00	-	04
	AMW	31266	1532881	4/92/057346	65	"	-	0.5	0.0	-	0.7
l	BOF	1547	815/66	10072054062			0.11		1	0.1	
]		9398	10/1819	14431062000	20		0.11				
1	AI PTOC.	63100	11000	73693065210	1				1		
000000		1		,	1				1		
	AMM	723	1532881	1108272963	63	0	-	0.01	0	-	0.01
I	BOF	117	815766	95444622	5				1		
l	CONS	101	1071819	108253719	6		0.0006		1 4	0.0004	
	Al Proc.	2620	173659	454986580	26				1		
1				1766957884							
<u>Chromiun</u>	n	1				_		-	1 ~		^
1	AMW	78.00	1532881	119564718	50	0	-	0	0	-	0
1	BOF	57	815766	46498662	19		~			0	
I	CONS	44	1071819	4/160036	20		0		1	J	
	Al Proc.	160	173659	2//85440	4 12	1					
_				241008856	'						
<u>Titanium</u>	1	F00	1500004	004200700	70	l •	-	0.013	0.00	_	0.012
I	AMW	590	01532681	201033136	1 2	1		2.310			
l		28	1071810	216507429	17	1	0.002		1	0.002	
	AL Prop	202	173659	139100859	11					-	
1	AITIOC.		1,000	1282849535	ត						
		<u></u>		1 12020 10000		د میں میں ملک			ويستعد المستعد المراكف	المتقبية فقرعي	ويتدعون والمحيولي

TABLE B1: Theoretical Calculation of East Quarry Leachate Concentration

AMW – approved mixed waste BOF – basic oxygen furnace oxides CONS - contaminated soils

Al. proc. - aluminum processing waste

Output from PHREEQE modelling of predicted East Quarry Landfill Leachate

•

•

ELEMEN SPECIE	ITS S IIN								
Taro -	oredicte	ed lead	hate						
003001	1000 1 1		.00000						
SOLUTI	ON 1								
33-II	- Recircu	lation	leachate	∎inu	a aluminum	proc	essing wast	e ef	fects
34 10	2 11.	3	-1.00	10.	0 1.00				
4	0.000D+00) 5.	0.000D+00	6	0.000D+00	7	0.000D+00	8	1.250D+00
9	8.300D+00) 10	3.8970+03	11	1.5500+03	12	0.000D+00	13	8.000D+03
14	0.000D+00) 15	0.000D+00	16	1.500D+00	17	0.000D+00	18	0.000D+00
19	5.300D+02	2 20	0.0000+00	21	0.000D+00	22	0.0000+00	23	8.683D+02
24	3.9600+03	3 25	0.000D+00	26	0.000D+00	27	0.0000+00	28	0.000 D+0 0
29	1.200D+02	2 30	6.101D+01	31	5.2200+00	32	0.0000+00	33	0.000 D+0 0
34	0.0000+00) 35	0.000D+00	36	0.000D+00	37	0.000D+00		
REACTI	ON						1		
23	-1.000	4.000							
STEPS									
.900)E-02								
SOLUTI	ON NUMBER	2 1	33-1	Π					

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG NOLALITY
BA	9.277802D-06	-5.0326
BR	1.058868D-04	-3.9752
TOT ALK	6.619775D-02	-1.1792
CA	3.942177D-02	-1.4043
CL	2.300219D-01	6382
F	8.0483410-05	-4.0943
K	1.3816850-02	-1.8596
N	1.427499D-02	-1.8454
NA	1.755869D-01	7555
S	1.273396D-03	-2.8950
SI	6.4705280-04	-3.1891
SR	6.072945D-05	-4.2166

----DESCRIPTION OF SOLUTION----

PH	=	11.3000
PE	=	-1.0000
ACTIVITY H20	=	.9917
IONIC STRENGTH	=	.2782
TEMPERATURE	Ξ	10.0000
ELECTRICAL BALANCE	=	-1.6415D-02
THOR	=	-9.9046D+00
TOTAL ALKALINITY	=	6.6198D-02
ITERATIONS	=	9
TOTAL CARBON	=	3.2655D-02

DISTRIBUTION OF SPECIES

I	SPECIES	Z	MOLALITY	LOG MOLALITY	ACTIVITY	LOG ACTIVITY	GANNA	LOG GANNA
1	H+	1.0	5.77043D-12	-11, 1694	5.01187D-12	-11.3000	7.40259D-01	1306
• •	F-	-1.0	1.000000+01	1.0000	1.000000+01	1.0000	1.000000+00	.0000
2	H20	.0	9,917490-01	0036	9.91749D-01	0036	1.00000D+00	.0000
8	RA 2+	2.0	9.269340-06	-5,0330	2.783460-06	-5.5554	3.00286D-01	5225
9	RR-	-1.0	1.058870-04	-3.9752	7.838370-05	-4.1058	7.40259D-01	1306
10	CO3 2-	-2.0	9.114200-03	-2.0403	2.736870-03	-2.5627	3.00286D-01	5225
11	CA 2+	2.0	2.00041D-02	-1.6989	6.749910-03	-2.1707	3.37427D-01	4718
13	CL-	-1.0	2.30022D-01	6382	1.557530-01	8076	6.77123D-01	-,1693
15	F-	-1.0	7.621400-05	-4.1180	5.641810-05	-4.2486	7.40259D-01	1306
19	K+	1.0	1.380360-02	-1,8600	9.346720-03	-2.0293	6.77123D-01	1693
23	 NO3 -	-1.0	6.34656D-24	-23.1975	4.69810D-24	-23.3281	7.40259D-01	1306
24	NA+	1.0	1.71531D-01	7657	1.25715D-01	9006	7.32902D-01	+.1350
29	SO4 2-	-2.0	8.493190-04	-3.0709	1.97092D-04	-3.7053	2.32059D-01	6344
30	H4ST04	.0	3.613380-05	-4.4421	3.85242D-05	-4.4143	1.066150+00	.0278
31	SR 2+	2.0	6.06410D-05	-4,2172	1.82097D-05	-4.7397	3.00286D-01	5225
55	NH4 +	1.0	1.42388D-02	-1.8465	1.054040-02	-1.9771	7.40259D-01	1306
56	NO2 -	-1.0	2.98736D-14	-13.5247	2.21142D-14	-13.6553	7.40259D-01	1306
58	SO3 2-	-2.0	4,823200-28	-27.3167	1.44834D-28	-27.8391	3.00286D-01	5225
65	OH-	-1.0	8.14416D-04	-3.0892	6.02879D-04	-3.2198	7.40259D-01	1306
66	H35I04 -	-1.0	5.34115D-04	-3.2724	3.95384D-04	-3.4030	7.40259D-01	1306
67	H25I04	-2.0	7.68038D-05	-4.1146	2.30631D-05	-4.6371	3.00286D-01	5225
75	NH4S04 -	-1.0	3.61523D-05	-4.4419	2.67621D-05	-4.5725	7.40259D-01	1306
84	CAOH +	1.0	1.24148D-04	-3.9061	9.19014D-05	-4.0367	7.40259D-01	1306
85	CAHCO3 +	1.0	2.52100D-05	-4.5984	1.86619D-05	-4.7290	7.40259D-01	1306
86	CACO3 AG	.0	1.90423D-02	-1.7203	2.03020D-02	-1.6925	1.06615D+00	.0278
87	CASO4 AG	0.	2.22879D-04	-3.6519	2.37623D-04	-3.6241	1.06615D+00	.0278
91	CAF +	1.0	3.19051D-06	-5.4961	2.36181D-06	-5.6268	7.40259D-01	1306
92	NACO3 -	-1.0	3.88378D-03	-2.4107	2.87500D-03	-2.5414	7.40259D-01	1306
93	NAHCO3 A	0. /	1.94457D-05	-4.7112	2.07320D-05	-4.6834	1.06615D+00	.0278
94	NASO4 -	-1.0	1.51770D-04	-3.8188	1.12349D-04	-3.9494	7.40259D-01	1306
96	NAF AQ	.0	1.07892D-06	-5.9670	1.15029D-05	-5.9392	1.06615D+00	.0278
97	KS04 -	-1.0	1.32763D-05	-4.8769	9.82791D-06	-5.0075	7.40259D-01	1306
134	SROH +	1.0	8.84088D-08	-7.0535	6.54454D-08	-7.1841	7.40259D-01	1306
135	BAOH +	1.0	8.46215D-09	-8.0725	6.26419D-09	-8.2031	7.40259D-01	1306
272	HCO3 -	-1.0	5.70487D-04	-3.2438	4.22308D-04	-3.3744	7.40259D-01	1306
273	H2CO3 AG	. .0	5.75806D-09	-8.2397	6.13898D-09	-8.2119	1.06615D+00	.0278
274	HS04 -	-1.0	8.63444D-14	-13.0638	6.39172D-14	-13.1944	7.40259D-01	1306
275	HF AQ	.0	2.87244D-13	-12.5417	3.06246D-13	-12.5139	1.06615D+00	.0278
276	HF2 -	-1.0	8.04974D-17	-16.0942	5.95889D-17	-16.2248	7.40259D-01	1306
277	H2F2 AQ	.0	4.395590-25	-24.3570	4.68638D-25	-24.3292	1.06615D+00	.0278

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-5.8760	-4.4936	-1.3824
ARAGONIT	-4.7334	-8.2107	3.4773
BAF2	-14.0526	-5.7988	-8.2537
BARITE	-9.2607	-10.2238	.9631
CALCITE	-4.7334	-8.4064	3.6730
CELESTIT	-8,4450	-6.4518	-1.9933
CHALCEDO	-4,4071	-3.6990	7081
CRISTOBA	-4.4071	-3.8036	6035
FLUORITE	-10.6679	-11.1429	.4750
GYPSUM	-5.8832	-4.8601	-1.0231
HALITE	-1.7082	1.5443	-3.2525
MAGADIIT	-20.4681	-14.3000	-6.1681
MIRABILI	-5.5425	-1.8474	-3.6952
NATRON	-4.4000	-1.9212	-2.4788
QUARTZ	-4.4071	-4.2515	1556
SI02(A,G	-4.4071	-2.8523	-1.5548
SIO2(A,P	-4.4071	-2.8523	-1.5548
SRF2	-13.2369	-8.5885	-4.6483
STRONTIA	-7.3024	-9.2232	1.9208
THENARDI	-5.5066	1579	-5.3487
THERMONA	-4.3676	.2387	-4.6063
WITHERIT	-8.1182	-8.6040	.4858
SULFUR	-88.0909	-37.9421	-50.1488
LIME	20.4257	34.5962	-14.1705
PORTLAND	20.4221	23.8617	-3.4396
WOLLASTO	16.0186	13.7572	2.2615
P-WOLLST	16.0186	14.6681	1.3505
CA-OLIVI	36.4443	39.7736	-3.3292
LARNITE	36.4443	41.3626	-4.9182
CA3SIOS	56.8700	77.9987	-21.1287
NA2S03	-26.1030	5.0649	-31.1679
K2S03	-28.3604	8.2946	-36.6551
CAS03.2H	-26.4796	-3.5984	-22.8812
CASO3.5H	-26.4742	-3.1245	-23.3498
BASO3	-29.8571	-5.5408	-24.3163
CH4(GAS)	-107.5520	-43.4486	-64.1034
CO2(6AS)	-25.1591	-18.1806	-6.9786
02(6AS)	41.1928	88.4252	-47.2324

STEP NUMBER 1

9.000D-03 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

-1.00 MOLES OF N

VALENCE = 4.000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
BA	9.2778020-06	-5.0326
BR	1.058868D-04	-3.9752
TOT ALK	3.2655490-02	-1.4860
CA	3.942177D-02	-1.4043
CL	2.300219D-01	6382
F	8.048341D-05	-4.0943
K	1.381685D-02	-1.8596
N	5.274993D-03	-2.2778
NA	1.755869D-01	7555
S	1.273396D-03	-2.8950
SI	6.470528D-04	-3.1891
SR	6.072945D-05	-4.2166

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-5.8130	-4.4936	-1.3194
ARAGONIT	-4.8268	-8.2107	3.3839
BAF2	-14.0579	-5.7988	-8.2591
BARITE	-9.2654	-10.2238	.9584
CALCITE	-4.8268	-8.4064	3.5796
CELESTIT	-8.4495	-6.4518	-1.9977
CHALCEDO	-3.4008	-3.6990	. 2982
CRISTOBA	-3.4008	-3.8036	. 4028
FLUORITE	-10.6055	-11,1429	.5373
GYPSUM	-5.8202	-4.8601	9601
HALITE	-1.7056	1.5443	-3.2499
MAGADIIT	-14.7110	-14.3000	4110
MIRABILI	-5.5424	-1.8474	-3.6951
NATRON	-4.5562	-1.9212	-2.6350
QUARTZ	-3.4008	-4.2515	.8507
SI02(A,6	-3.4008	-2.8523	5485
SIO2(A,P	-3.4008	-2.8523	5485
SRF2	-13.2420	-8.5885	-4.6535
STRONTIA	-7.4632	-9.2232	1.7600
THENARDI	-5.5068	1579	-5.3490
THERMONA	-4.5241	.2387	-4.7629
WITHERIT	-8.2792	-8.6040	.3248
SULFUR	-77.7806	-37.9421	-39.8385
LIME	17.9150	34.5962	-16.6812
PORTLAND	17.9114	23.8617	-5.9502
WOLLASTO	14.5142	13.7572	.7570
P-WOLLST	14.5142	14.6681	1539
CA-OLIVI	32.4292	39.7736	-7.3444
LARNITE	32.4292	41.3626	-8.9334
CA3SI05	50.3442	77.9987	-27.6545
NA2SO3	-23.5244	5.0649	-28.5893
K2S03	-25.7865	8.2946	-34.0812
CASO3.2H	-23.8377	-3.5984	-20.2393
CASO3.5H	-23.8323	-3.1245	-20.7079
BASO3	-27.2830	-5.5408	-21.7421
CH4(GAS)	-94.8190	-43.4486	-51.3704
CO2(GAS)	-22,7418	-18.1806	-4.5612
02(GAS)	36.0351	88,4252	-52,3901

PAGE	5
------	---

ELEMENT	MOLALITY	LOG NOLALITY
BA	9.277802D-06	-5.0326
BR	1.058868D-04	-3.9752
С	3.265549D-02	-1.4860
CA	3.942177D-02	-1.4043
CL	2.300219D-01	6382
F	8.048341D-05	-4.0943
К	1.381685D-02	-1.8596
N	5.274993D-03	-2.2778
NA	1.755869D-01	7555
S	1.273396D-03	-2.8950
SI	6.470528D-04	-3.1891
SR	6.072945D-05	-4.2166

TOTAL MOLALITIES OF ELEMENTS

----DESCRIPTION OF SOLUTION----

PH =	10.0105
PE =	-1.0000
ACTIVITY H2O =	.9918
IONIC STRENGTH =	.2777
TEMPERATURE =	10.0000
ELECTRICAL BALANCE =	-1.64150-02
THOR =	-9.8776D+00
TOTAL ALKALINITY =	5.73150-02
ITERATIONS =	18

DISTRIBUTION OF SPECIES

I	SPECIES	1	MOLALITY	LOG MOLALITY	ACTIVITY	LOG ACTIVITY	GANNA	LOG GAMMA
1	H+	1.0	1.318390-10	-9.8800	9.76016D-11	-10.0105	7.40306D-01	1306
2	F-	-1.0	1.000000+01	1.0000	1.000000+01	1.0000	1.00000D+00	.0000
2	L H20		9.918430-01	0036	9.91843D-01	0036	1.00000D+00	.0000
g	RA 7+	2.0	9.277370-06	-5.0326	2.786570-06	-5.5549	3.00352D-01	5224
å	RD-	-1.0	1.058870-04	-3,9752	7.83886D-05	-4.1057	7.40306D-01	1306
	000 0	2.0	6 202100-02	-2 2019	1.886930-03	-2.7242	3.00362D-01	5224
10		-2.0	0.282180-V3 2.339540-02	-1.6309	7.89698D-03	-2.1025	3.37544D-01	4717
12		-1 0	2 300220-01	6382	1.557880-01	8075	6.77277D-01	1692
15	5-	-1 0	7.569810-05	-4,1209	5,60398D-05	-4.2515	7.40306D-01	1306
10	r - V.	1 0	1.380370-02	-1.8500	9.34894D-03	-2.0292	6.772770-01	1692
22	NO2 -	-1 0	2 990560-37	-36, 5242	2.21393D-37	-36.6548	7.40306D-01	1306
23	NOJ NA+	1.0	1.724800-01	7633	1,264250-01	8982	7.32982D-01	1349
27	SD4 2-	-2.0	8.385640-04	-3.0765	1.94759D-04	-3.7105	2.32253D-01	6340
20	HACTOA	.0	3.667050-04	-3.4357	3,90917D-04	-3.4079	1.06603D+00	.0278
21	GD 2+	2.0	6.072490-05	-4.2166	1.82395D-05	-4.7390	3.00362D-01	5224
55	NH4 +	1.0	5.261790-03	-2.2789	3.89534D-03	-2.4095	7.40306D-01	1306
56	NO2 -	-1.0	5.337950-25	-24.2726	3.951720-25	-24.4032	7.40306D-01	1306
58	503 2-	-2.0	1.806870-25	-24.7431	5,42716D-26	-25.2654	3.00362D-01	5224
55	000 L 0H-	-1.0	4.182180-05	-4.3786	3.09610D-05	-4.5092	7.40306D-01	1306
66	H3S104 -	1.0	2.782930-04	-3.5555	2.06022D-04	-3.6861	7.40306D-01	1306
67	H2SI04	2.0	2.054520-06	-5.6873	6.17101D-07	-6.2096	3.00362D-01	5224
75	NH4SO4	1.0	1.32015D-05	-4.8794	9.773190-06	-5.0100	7.40306D-01	1306
94	CA0H +	1.0	7.458610-06	-5,1273	5.52166D-06	-5.2579	7.40306D-01	1306
85	CAHCO3	+ 1.0	3.959740-04	-3.4023	2.93142D-04	-3.5329	7.40306D-01	1306
86	CACO3 A	D .0	1.536160-02	-1.8136	1.63758D-02	-1.7858	1.06603D+00	.0278
87	CASO4 A	0.0	2.576990-04	-3.5889	2.747140-04	-3.5611	1.06603D+00	.0278
91	CAF +	1.0	3.70744D-06	-5.4309	2.74464D-06	-5.5615	7.40306D-01	1306
92	NACO3 -	-1.0	2.69260D-03	-2.5698	1.99335D-03	-2.7004	7.40306D-01	1306
93	NAHC03	A .0	2.62589D-04	-3.5807	2.79927D-04	-3.5530	1.06603D+00	.0278
94	NASO4 -	-1.0	1.50810D-04	-3.8216	1.11646D-04	-3.9522	7.40306D-01	1306
96	NAF AQ	.0	1.07785D-06	-5.9674	1.14902D-06	-5.9397	1.06603D+00	.0278
97	KS04 -	-1.0	1.31215D-05	-4.8820	9.71390D-06	-5.0126	7.40306D-01	1306
134	SROH +	1.0	4.54739D-09	-8.3422	3.36646D-09	-8.4728	7.40306D-01	1306
135	BAOH +	1.0	4.35034D-10	-9.3615	3.22059D-10	-9.4921	7.40306D-01	1306
272	HC03 -	-1.0	7.65909D-03	-2.1158	5.67007D-03	-2.2464	7.40306D-01	1306
273	H2C03 A	Q.0	1.50572D-06	-5.8223	1.60513D-06	-5.7945	1.06603D+00	.0278
274	HS04 -	-1.0	1.661470-12	-11.7795	1.23000D-12	-11.9101	7.40306D-01	1306
275	HF AQ	.0	5.55696D-12	-11.2552	5.92387D-12	-11.2274	1.06603D+00	.0278
276	HF2 -	-1.0	i.54656D-15	-14.8106	1.14493D-15	-14.9412	7.40306D-01	1306
277	H2F2 AQ	.0	1.64490D-22	-21.7839	1.75350D-22	-21.7561	1.06603D+00	.0278
353	HSO3-	-1.0	1.05905D-28	-27.9751	7.84023D-29	-28.1057	7.40306D-01	1306

PAGE 7 0030011000 1 2 .00000 REACTION 13 -1.000 -1.000 24 -1.000 1.000 STEPS .130 STEP NUMBER 1

1.300D-01 MOLES OF REACTION HAVE BEEN ADDED.

REACTION IS:

-1.00 MOLES OF CL	L VALENCE	=	-1.000
-1.00 MOLES OF NA	A VALENCE	Ξ	1.000

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY				
BA	9.277802D-06	-5.0326				
BR	1.0588680-04	-3.9752				
C	3.2655490-02	-1.4860				
CA	3.9421770-02	-1.4043				
CL	1.000219D-01	9999				
F .	8.0483410-05	-4.0943				
K	1.3816850-02	-1.8596				
N	5.2749930-03	-2.2778				
NA	4.558691D-02	-1.3412				
S	1.273396D-03	-2.8950				
SI	6.470528D-04	-3.1891				
SR	6.0729450-05	-4.2165				

---- LOOK MIN IAP ----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
ANHYDRIT	-5.6811	-4.4936	-1.1875
ARAGONIT	-4.7791	-8.2107	3.4316
BAF2	-13,9593	-5.7988	-8.1604
BARITE	-9.0866	-10.2238	1.1373
CALCITE	-4.7791	-8.4064	3.6274
CELESTIT	-8.2707	-6.4518	-1.8189
CHALCEDO	-3.4098	-3.6990	.2892
CRISTOBA	-3.4098	-3.8036	.3938
FLUORITE	-10.5538	-11.1429	.5891
GYPSUM	-5.6843	-4.8601	8242
HALITE	-2.6002	1.5443	-4.1445
MAGADIIT	-15.3219	-14.3000	-1.0219
MIRABILI	-6.5393	-1.8474	-4.6919
NATRON	-5.6373	-1.9212	-3.7161
QUARTZ	-3.4098	-4.2515	.8417
SI02(A,G	-3.4098	-2.8523	5575
SIO2(A,P	-3.4098	-2.8523	5575
SRF2	-13.1433	-8.5885	-4.5548
STRONTIA	-7.3686	-9.2232	1.8546
THENARDI	-6.5230	1579	-6.3651
THERMONA	-5.6226	.2387	-5.8614
WITHERIT	-8.1846	-8.6040	.4194
SULFUR	-77.7461	-37.9421	-39.8040

--

-----LOOK MIN IAP Cont'd-----

PHASE	LOG IAP	LOG KT	LOG IAP/KT
LIME	17.9500	34.5962	-16.6462
PORTLAND	17.9484	23.8617	-5.9132
WOLLASTO	14.5402	13.7572	.7831
P-WOLLST	14.5402	14.6681	1279
CA-OLIVI	32.4903	39.7736	-7.2833
LARNITE	32.4903	41.3626	-8.8723
CA35105	50.4403	77.9987	-27.5584
NA2S03	-24.5613	5.0649	-29.6263
K2S03	-25.6219	8.2946	-33.9165
CAS03.2H	-23.7226	-3.5984	-20.1242
CASO3.5H	-23,7202	-3.1245	-20.5957
BAS03	-27,1249	-5.5408	-21.5841
CH4(GAS)	-94.8856	-43.4486	-51.4371
CO2(GAS)	-22,7291	-18,1806	-4.5485
02(6AS)	36.0766	88,4252	-52.3486

TOTAL MOLALITIES OF ELEMENTS

ELEMENT	MOLALITY	LOG MOLALITY
BA	9.277802D-06	-5.0326
BR	1.058868D-04	-3.9752
C	3.265549D-02	-1.4860
CA	3.9421770-02	-1.4043
CL	1.000219D-01	9999
F	8.048341D-05	-4.0943
ĸ	1.381685D-02	-1.8596
N	5.274993D-03	-2.2778
NA	4.5586910-02	-1.3412
S	1.273396D-03	-2.8950
SI	6.470528D-04	-3.1891
SR	6.072945D-05	-4.2166

----DESCRIPTION OF SOLUTION----

=	10.0200
=	-1.0000
=	.9963
=	.1422
=	10.0000
=	-1.64150-02
=	-9.87760+00
=	5.73140-02
=	18

PAGE 8

```
PAGE 9
```

--------DISTRIBUTION OF SPECIES

_

I	SPECIES	Z	MOLALITY	LOG MOLALITY	ACTIVITY	LOG ACTIVITY	GAMMA	LOG GAMMA
i	H+	1.0	1.24547D-10	-9.9047	9 .5 5057D-11	-10.0200	7.66826D-01	1153
2	E-	-1.0	1.000000+01	1.0000	1.00000D+01	1.0000	1.00000D+00	.0000
3	H20	.0	9.96267D-01	0016	9.96267D-01	0016	1.00000D+00	.0000
8	BA 2+	2.0	9.27731D-06	-5.0326	3.20781D-06	-5.4938	3.45769D-01	4612
9	BR-	-1.0	1.05887D-04	-3.9752	8.11967D-05	-4.0905	7.66826D-01	1153
10	CO3 2-	-2.0	5.89414D-03	-2.2296	2.03801D-03	-2.6908	3.457690-01	4612
11	CA 2+	2.0	2.09436D-02	-1.6789	8.16060D-03	-2.0883	3.89646D-01	4093
13	CL-	-1.0	1.00022D-01	9999	7.325910-02	-1.1351	7.324300-01	1352
16	F-	-1.0	7.63067D-05	-4.1174	5.85139D-05	-4.2327	7.66826D-01	1153
19	K+	1.0	1.37989D-02	-1.8602	1.01057D-02	-1.9954	7.32430D-01	1352
23	NO3 -	-1.0	3.76260D-37	-36.4245	2.88526D-37	-36.5398	7.66826D-01	1153
24	NA+	1.0	4.46962D-02	-1.3497	3.42683D-02	-1.4651	7.66694D-01	1154
29	SO4 2-	-2.0	8.26121D-04	-3.0830	2.55388D-04	-3.5928	3.09141D-01	5098
30	H4SIO4	.0	3.73877D-04	-3.4273	3.86317D-04	-3.4131	1.033270+00	.0142
31	SR 2+	2.0	6.07243D-05	-4.2166	2.09966D-05	-4.6779	3.45769D-01	4612
55	NH4 +	1.0	5.25770D-03	-2.2792	4.03174D-03	-2.3945	7.66826D-01	1153
56	NO2 -	-1.0	6.40210D-25	-24.1937	4.90930D-25	-24.3090	7.66826D-01	1153
58	SO3 2-	-2.0	1.96201D-25	-24.7073	6.78402D-26	-25.1685	3.45769D-01	4612
65	0H-	-1.0	4.14456D-05	-4.3825	3.178150-05	-4.4978	7.66826D-01	1153
66	H3SI04 -	-1.0	2.71334D-04	-3.5665	2.08066D-04	-3.6818	7.66826D-01	1153
67	H2SI04	-2.0	1.84198D-06	-5.7347	6.36899D-07	-6.1959	3.45769D-01	4612
75	NH4SO4 -	-1.0	1.72977D-05	-4.7620	1.32643D-05	-4.8773	7.66826D-01	1153
84	CAOH +	1.0	7.63826D-06	-5.1170	5.857210-06	-5.2323	7.66826D-01	1153
85	CAHCO3 +	• 1.0	4.17509D-04	-3.3793	3.20156D-04	-3.4946	7.66826D-01	1153
86	CACO3 AG	.0	1.768890-02	-1.7523	1.82774D-02	-1.7381	1.03327D+00	.0142
87	CASO4 AG	.0	3.60271D-04	-3.4434	3.72258D-04	-3.4292	1.03327D+00	.0142
91	CAF +	1.0	3.86200D-06	-5.4132	2.96148D-06	-5.5285	7.66826D-01	1153
92	NACO3 -	-1.0	7.61025D-04	-3.1186	5.83573D-04	-3.2339	7.66826D-01	1153
93	NAHCO3 A	.0	7.76093D-05	-4.1101	8.01916D-05	-4.0959	1.03327 D +00	.0142
94	NASO4 -	-1.0	5.17498D-05	-4.2861	3.96830D-05	-4.4014	7.66826D-01	1153
96	NAF AQ	.0	3.14729D-07	-6.5021	3.252010-07	-6.4878	1.03327D+00	.0142
97	KS04 -	-1.0	1.79576D-05	-4.7458	1.37703D-05	-4.8611	7.66826D-01	1153
134	SROH +	1.0	5.187690-09	-8.2850	3.97805D-09	-8.4003	7.66826D-01	1153
135	BAOH +	1.0	4.96291D-10	-9.3043	3.80569D-10	-9.4196	7.668260-01	1153
272	HCO3 -	-1.0	7.81475D-03	-2.1071	5.99255D-03	-2.2224	7.66826D-01	1153
273	H2CO3 AG	.0	1.60654D-06	-5.7941	1.66000D-06	-5.7799	1.033270+00	.0142
274	HSO4 -	-1.0	2.05817D-12	-11.6865	1.578260-12	-11.8018	7.66826D-01	1153
275	HF AQ	.0	5.857670-12	-11,2323	6.05258D-12	-11.2181	1.033270+00	.0142
276	HF2 -	-1.0	1.59287D-15	-14.7978	1.221450-15	-14.9131	7.66826D-01	1153
277	H2F2 AQ	.0	1.77158D-22	-21.7516	1.83053D-22	-21.7374	1.03327D+00	.0142
353	HS03-	-1.0	1.25060D-28	-27.9029	9.589930-29	-28.0182	7.66826D-01	1153

Assessment of Metal Solubilities

APPENDIX C

METAL SOLUBILITY

A modelling exercise was conducted to evaluate the maximum concentrations of various metals that might potentially occur in the leachate. These metals included zinc, aluminum, lead, iron and nickel.

Discussion of the modelling process

The modelling was based upon the geochemical model PHREEQE developed by the United States Geological Survey (Parkhurst et al., 1985). As input, the model requires an estimate of the pH, pe (redox potential), major ion concentrations and trace element concentrations. These input were taken from the predicted landfill leachate concentrations (Table 3, Column E) for the proposed East Quarry Landfill. The overall composition of the leachate is not critical, except that:

- a) it must be a complex fluid to facilitate full speciation;
- b) the pH of the leachate has been predicted to remain highly alkaline (greater than 10). pHs between 7 and 12 were considered for this exercise. This is critical for the selection appropriate solid phases used to model maximum concentrations (as discussed further below); and
- c) the redox potential of the leachate is estimated to be reducing (pe = -1). The redox potential is important because the solubility for some metals varies greatly with valence.

The predicted leachate included estimated concentrations for barium, bromide, bicarbonate, calcium, chloride, fluoride, potassium, nitrogen, sodium, sulphate, silica and strontium. Species interaction between metal phases is assumed to be negligible.

To estimate soluble limits for the metals, phases were selected for modelling from the available PHREEQE thermodynamic database (about 400 solid phases). Preference was given to reduced oxides, hydroxides, carbonates and pure metals because these phases are most likely to present within the waste and are stable under reducing, alkaline conditions. The following phases were selected for equilibration:

aluminum: amorphous Al(OH)₃ zinc: Zn(OH)₂ iron: ferrihydrite nickel: Ni(OH)₂ lead: Pb(OH)₂ Solubilities were determined by individually dissolving these phases until equilibration with the predicted leachate quality at unit pHs between 7 and 12 inclusive. The initial solution was charge balanced using calcium and chloride. Equilibration was conducted under closed conditions at a pe of -1 and a temperature of 10°C. Resulting concentrations were then converted into units of mg/L and plotted.

General Conclusions

Metal concentrations are expected to be low in the leachate because of the physical limits imposed by thermodynamic conditions.

Under the alkaline conditions predicted for the leachate, these metals exhibit low solubility that decreases with increasing pH (except for aluminum). The accompanying figures demonstrate these relationships.

Sensitivity Analyses

Further examinations of ZnO, Zn metal, ZnSO₄ and ZnCO₃ were completed to evaluate the effects of oxides, carbonates, sulphates and pure metal. The metal and sulphate phases were found to have much higher solubilities than the oxides and hydroxides (although the kinetics of these dissolution reactions would prevent equilibrium from being reached). ZnO constrains the maximum concentrations under slightly alkaline conditions and ZnCO₃ limits the concentrations under neutral and slightly acidic conditions. Similar behavior is expected for nickel, aluminum and iron.

The redox sensitivity was not established. It is expected that this exercise is valid for reducing conditions but is not valid for oxidizing conditions.

Theoretical zinc maximum concentrations

Appendix D

Critical Contaminant Assessment

Table D1:Inorganic ParametersTable D2:Organic Parameters

Compo	bow	0000		Predic	ted	West Quarry Leachate				
Compo	Juna	ODWO		Fact O		(ra	(range in all monitors)			
					eschate	Ra		Average		
	units						Total # samp	pies 78		
рН	pH units	6.5-8.5	0	7.4 -	12.83	7.4 -	12.83	10.86		
Conductivity	µmhos/cm			814 -	12750	814 -	134000	13171		
TDS	ma/L	500	a	598 -	14256	598 -	118000	10445		
COD	mg/L			800 -	5000	10 -	5000	[,] 649		
тос	mg/L	_		154 -	1310	4.6 -	1310	185		
Alkalinity	mg CaCO ₃ /L	30-500	0	232 -	4550	49 -	8440	1582		
Hardness	mg CaCO₃/L	80-100	0	109 -	2552	70 -	4552	1329		
Calcium	mg/L			343 –	1820	20.6 -	1820	523.5		
Magnesium	mg/L		_	0 -	26.4	0 -	26.4	4.6		
Sodium	mg/L	200	a	<u> 161 </u>	739	139 -	47600	2594		
Potassium	mg/L			1550 -	2360	15.1 -	2360	373		
Chloride	mg/L	250	a	34	161	0 -	87000	4547		
Fluoride	mg/L	1.5	h	0 -	3.9	0 -	4.2	2		
Bromide	mg/L			0 -	78	0 -	78			
Sulphate	mg/L	500	a	715 -	3180	0 -	3180	619		
Ammonia	mg/L			3 -	31	3.76 -	2330	154		
TKN	mg/L			<u> </u>	110	5.4 -	2330	167		
Nitrate	mg/L	10	h	0	0.000	0 -	0.000	0.90		
Nitrite	mg/L	1	h	0.01 -	0.029	0 -	0.290	0.007		
Phosphate	mg/L			0 -	1./		2.00	0.23		
Aluminum	mg/L	0.1	0	0 -	0.50		2.41	0.17		
Barium	mg/L	1	n	0.05 -	2.07	0.03 -	0.0014	0.402		
Beryllium				0 -	0.001		1 24	0.29		
Boron	mg/L	0.005	<u>n</u>	0 -	0.027		0.0008	0.0002		
Cadmium		0.005	 	0 -	0.02	0 -	0.04	0.002		
Cabalt	mg/L	0.05		0 -	0.02	0 -	0.16	0.01		
Coppor	mg/L	1		0 -	0.15	0 -	0.15	0.01		
Lead	mg/L	0.01	h	0 -	0.04	0 -	0.04	0.001		
lron	mg/L	0.3		0 -	0.63	0 -	0.63	0.07		
Manganese	mg/L	0.05	a	0 -	0.44	0 -	0.44	0.03		
Molybdenum	mg/L		-	0 -	1.1	0 -	1.1	0.11		
Nickel	mg/L			0 -	0.78	0 -	0.78	0.14		
Silica	mg/L			7.17 -	37.3	1.9 -	37.3	6.94		
Silver	ma/L			()	0 -	0.006	0.0002		
Strontium	ma/L			2.41 -	10.9	0.47 -	10.9	2.91		
Titanium	mg/L			0 -	0.011	0 -	0.017	0.003		
Vanadium	mg/L			0 -	0.07	0 -	0.07	0.01		
Zinc	mg/L	5	a	0 -	0.9	0 -	0.5	0.02		
Thorium	mg/L					0 -	0.14	0.02		
Zircon	mg/L					0 -	0.04	0.01		
Phenois	µg/L			180 -	47500	180 -	47500	7000		

West Quarry Leachate

h - health related objective
 a - aesthetic objective associated with taste, smell and colour
 o - operational objective to ensure efficient treatment of water

	a constant and a	0014/0		Dee 4	Researchia				
Compo	buna	Owo	' .	Fred Fast C		580	Ileo		
					l acabete		annosa D0105	Average	030
				Langill	Leachate	ria.	Totel # Samal		Based on everage
		65.0F		74	12 82	711 _	Ser Pampi		Frames
Conductivity		0.3-0.3	0	<u> </u>	12.00	617 -	5750	2226	
	µmnos/cm			509	14056	AA2 -	12560	2136	2136
	mg/L	- 500	_ a	800 -	5000		552	<u>2100</u> 29.72	2100
	mg/L			154	1310		. 35.3	<u> </u>	
Alkelisiku		30- 500		232	4550	177 _	. 547	375	438
Hardson	mg CaCO _g /L	80-100	-	100 -	2552	358.0 -	A746	1301	1301
Calcium		00-100	0	343 -	1820	963 -		237	
Meanasium	mg/L			040 -	26 4	27 4 -		179	
Sodium	mg/L	200		161 -	. 730		260	90	145
Poteccium	mg/L	200	a	1550 -	2360		. 37.3	3 47	
Chlorida	mg/L	250		34 -	. 161	78 -	. 496	151	200
Fluorido		2.50	a h	0 -	39	<u> </u>	- 13	0.70	0.90
Bromido	mg/L	1.0	-"	 	78		. 10	0.05	
Sulpheto	mg/L	500		715 -	3180	98.2 -	. 4940	904	904
Ammonio			<u>a</u>	3 -	- 31	0 -	- 077	0 13	
TKN	mg/L			51 -	- 110	0.02 -	. 26	0.10	
Nitrato	mg/L	10	Ь		<u> </u>	0 -	. 19.2	0.96	3.22
Nitzito	mg/L	1	h	0.01 -	0 020		. 0.21	0.00	0.25
Phoenheto	mg/L		-1	0.01 -	17	0 -	. 13	0.06	0.20
Aluminum	mg/L	0.1		<u>0 </u>	0.58	0 -	0.67	0.05	0.07
Barium	mg/L	1	-	0.05 -	2.00	<u> </u>	. 0.099	0.04	0.28
Bervillium	mg/L	-		0 -	0.001	<u> </u>	- 0.003	0.0001	
Boron	ma/l	5	Ь	 0 -	0.627	0 -	- 1.1	0.14	1.35
Cadmium	ma/l	0.005	h	0 -	0.001	0 -	0.055	0.0011	0.002
Chromium	ma/l	0.05	h	<u> </u>	0.02	<u> </u>	0.05	0.003	0.015
Cobalt	ma/l			<u> </u>	0.15	0 -	- 0.08	0.001	
Copper	mg/L	1		<u> </u>	0.15	0 -	- 0.17	0.004	0.502
Lead	ma/l	0.01	h	0 -	0.04	<u> </u>	0.02	0.0005	0.003
Iron	ma/l	0.3	A	 0 -	0.63	0 -	. 3.28	0.24	0.269
Manganese	ma/L	0.05	a	0 -	0.44	0 -	· 1.81	0.14	0.141
Molybdenum	ma/L			0 -	1.1		0	0	
Nickel	ma/L			0 -	0.78	0 -	- 0.08	0.003	
Silica	ma/L			7.17 -	37.3	1.16 -	8.64	5.23	
Silver	ma/L			()	0 -	- 0.008	0.0004	
Strontium	ma/L			2.41 -	10.9	0.266 -	6.48	2.24	
Titanium	ma/L			0 -	0.011	0 -	- 0.011	0.0008	
Vanadium	ma/L			0 -	0.07	0 -	- 0.025	0.0018	
Zinc	mg/L	5	a	0 -	0.9	0 -	- 1.09	0.21	2.60
Thorium	ma/L					0 -	- 0.07	0.01	
Zircon	mg/L					0 -	- 0.05	0.0040	
Phenols	μg/L			180 -	47500	0 -	- 2.0	0.09	

Framosa Dolostone

h - health related objective

a – aesthetic objective associated with taste, smell and colour o – operational objective to ensure efficient treatment of water

Compo	ound	ODWO		Pre	dic	ed	Background			Range in	Reasonable
				Eas	t Qu	arry	Vinemount Fl			Tow Zone	Use
				Landfil	Le	achate	Range			Average	
	units							Тс	tal # Sam	ples 107	Based on average
рН	pH units	6.5-8.5	0	7.4	-	12.83	6.92	_	8.73	7.52	VFZ
Conductivity	µmhos/cm			814	_	12750	330	_	4640	2513	
TDS	mg/L	500	a	598	-	14256	219		5410	2389	2389
COD	mg/L			800	-	5000	0	_	600	<u> </u>	
TOC	mg/L			154	-	1310	1.2	-	26	7.39	
Alkalinity	mg CaCO ₃ /L	30-500	•	232	-	4550	52		503	269	384
Hardness	mg CaCO₃/L	80-100	•	109		2552	576.8	-	2428	1384	1384
Calcium	mg/L			343		1820	178	-		400	
Magnesium	mg/L			0		26.4	19.2	-	2/0	93	100
Sodium	mg/L	200	<u>a</u>	161		739	8.3		512	119	160
Potassium	mg/L			1550		2360	0		4/./	14	015
Chloride	mg/L	250	a	34		161	13.5	_	890	0.70	215
Fluoride	mg/L	1.5	h	0	_	3.9	0		1.3	0.79	0.97
Bromide	mg/L			715	-	2190	517		9.2	1112	1112
Sulphate	mg/L	500	<u>a</u>	/15		3100	51.7	-	2700	1.01	1112
Ammonia	mg/L			5		110	0.08	_	<u>4./</u> 33	1.01	
I KN	mg/L	10		51		110	0.00	_	61	0.39	2 79
Nitrate	mg/L		<u></u>	0.01		0.029	0	_	0.15	0.03	0.25
Dheenhete	mg/L		- 1	0.01		17	0	_	18	0.23	
Alumioum		01		0		0.58	0	_	0.7	0.03	0.07
Resium		0.1	h	0.05		2 07	0	_	0.091	0.025	0.27
Bandlium	mg/L			0.00	_	0.001	0	_	0.003	0.0001	
Boron	mg/L	5	h	0	_	0.627	0.07	_	7.2	0.95	1.96
Cadmium	mg/L	0.005	h	0		0.001	0		0.017	0.0005	0.002
Chromium	mg/L	0.05	h	0	_	0.02	0	_	0.04	0.005	0.016
Cobalt	mg/L			0		0.15	0	_	0.14	0.002	
Copper	ma/L	1.	a	0	_	0.15	0		0.3	0.005	0.502
Lead	mg/L	0.01	h	0	-	0.04	0	-	0.02	0.0004	0.003
lron	mg/L	0.3	a	0		0.63	0	_	2.07	0.15	0.225
Manganese	mg/L	0.05	a	0	-	0.44	0	-	5.33	0.53	0.534
Molybdenum	mg/L			0	-	1.1	0	-	0.3	0.005	
Nickel	mg/L			0	-	0.78	0		0.31	0.02	
Silica	mg/L			7.17	-	37.3	0.86	-	10.3	3.88	
Silver	mg/L				0		0	_	0.0002	0	
Strontium	mg/L			2.41		10.9	1.04	-	11.2	4.80	
Titanium	mg/L			0		0.011	0	-	0.02	0.002	
Vanadium	mg/L			0	_	0.07	0	_	0.138	0.005	
Zinc	mg/L	5 ·	a	0	-	0.9	0		0.72	0.08	2.54
Thorium	mg/L						0	_	0.12	0.02	·
Zircon	mg/L						0		0.04	0.003	
Phenols	μg/L			180	-	47500	0	-	250	2.56	•

Vinemount Flow Zone

h - health related objective
 a - aesthetic objective associated with taste, smell and colour
 o - operational objective to ensure efficient treatment of water

.

Compo	ound	ODWO		Pre	dict	ted		Bac	kground	Range in	Reasonable
				East	t Qu	arry	Upper Flow Zone				Use
	4			Landfill Leachate			Range			Average	
	units	· · · · · · · · · · · · · · · · · · ·						Т	otal # Sa	mples 23	Based on average
pН	pH units	6.5-8.5	0	7.4	-	12.83	7.16	-	8.3	7.52	UFZ
Conductivity	µmhos/cm			814	-	12750	1259	-	9390	4114	
TDS	mg/L	500	a	598	_	14256	863	-	7331	3266	3266
COD	mg/L			800	_	5000	0		330	<u> </u>	
TOC	mg/L			154	-	1310	0.7	-	13	4.52	
Alkalinity	mg CaCO₃/L	30-500	0	232	-	4550	113	-	466	286	393
Hardness	mg CaCO ₃ /L	80-100	0	109	-	2552	435.1	-	2151	1332	1332
Calcium	mg/L			343		1820	127		633	383	
Magnesium	mg/L			0	-	26.4	28.3		144	91	
Sodium	mg/L	200	a	161	-	739	61.5	-	1490	473	473
Potassium	mg/L			1550	-	2360		-	51.5	25	
Chloride	mg/L	250	a	34		161	86.3		2500	689	689
Fluoride	mg/L	1.5	h	0		3.9	0.2	_	8.5	1.01	1.13
Bromide	mg/L					78			6.4	1.56	1001
Sulphate	mg/L	500	a			3180	148		2220	1261	1201
Ammonia	mg/L			3		31	0	-	28	6.00	
TKN	mg/L			51	_	110	0.19		30.4	0.00	0.74
Nitrate	mg/L	10	n	0.01	0	0.000	0		2 20	0.33	0.30
Nitrite	mg/L	1				0.029			3.32	0.18	0.39
Phosphate	mg/L			0	-	0.59			0.1	0.01	0.08
Aluminum	mg/L	0.1	0	0.05		2.07		_	0.57	0.00	0.00
Barium			<u></u>	0.05		0.001			0.03	0.02	
Boron		5	h		_	0.001	0 278		12	2 77	3.33
Cadmium	mg/L	0.005	h	0	_	0.027	0.270		0.007	0.001	0.002
Chromium	mg/L	0.005	h	0	-	0.02		0	0.007	0	0.013
Cobalt	mg/L	0.00		0	_	0.15		0		0	
Copper	mg/t	1		0	_	0,15	0		0.1	0.004	0.502
Lead	ma/l	0.01	h	0	_	0.04	1	0	<u> </u>	0	0.003
Iron	ma/L	0.3	a	0	_	0.63	0		0.87	0.14	0.221
Manganese	mo/L	0.05	a	0		0.44	0	_	0.25	0.08	0.083
Molybdenum	ma/L			0		1.1	1	0		0	
Nickel	ma/L			0	_	0.78	1	0		0	
Silica	ma/L			7.17		37.3	2.69	-	5.86	4.10	
Silver	ma/L				0		0		0.005	0.0002	
Strontium	mg/L			2.41	<u> </u>	10.9	0.97	_	9.37	4.96	
Titanium	mg/L			0		0.011	0	_	0.01	0.003	
Vanadium	mg/L			0	_	0.07	0	_	0.012	0.001	
Zinc	mg/L	5	a	0	-	0.9	0		0.2	0.03	2.52
Thorium	mg/L										
Zircon	mg/L						<u> </u>				
Phenols	ug/l			180	_	47500	0		4.5	0.30	
	~9/~	1					ľ ľ				

Upper Flow Zone

h – health related objective
 a – aesthetic objective associated with taste, smell and colour
 o – operational objective to ensure efficient treatment of water

Compo	und	ODWO	ī	Predict	ed	Bad	Reasonable		
Compo		00110		East Ou	arry		Use		
				Landfill Leachate		Range		Average	
	units		-+			Total # Samples 57			Based on average
ъH	oH units	6.5-8.5		7.4 -	12.83	6.91 -	8.13	7.42	MFZ
Conductivity	µmhos/cm			814 -	12750	1172 -	84000	13688	
TDS	mg/L	500	a	598 -	14256	884 -	84224	12896	12896
COD	mg/L			800 -	5000	0 -	1700	<u> </u>	
TOC	mg/L			154 -	1310	0 -	263	17.08	
Alkalinity	mg CaCO ₃ /L	30-500	0	232 –	4550	123 -	370	214	357
Hardness	mg CaCO ₃ /L	80-100	0	109 -	2552	673 –	29270	4854	4854
Calcium	mg/L			343 -	1820	145 -	8090	1364	
Magnesium	mg/L			0 -	26.4	46.1 -	2190	350	1700
Sodium	mg/L	200	a	161 -	739	14.3 -	12600	1782	1782
Potassium	mg/L			1550 -	2360	0 -	226	45	E709
Chloride	mg/L	250	a	<u> </u>	161	42.7 -	50400	5798	5/98
Fluoride	mg/L	1.5	h	0 -	3.9	0.2 -		0.54	0.78
Bromide	mg/L			0 -	78	0 -	575	62	1200
Sulphate	mg/L	500	a	715 -	3180	302 -	2130	1309	1309
Ammonia	mg/L			3 -	31	0 -	25	5.27	
TKN	mg/L				110	0.21 -	31	5.92	0.54
Nitrate	mg/L	10	h	0		0 -	1.5	0.05	2.54
Nitrite	mg/L	1	h	0.01 -	0.029	0 -	0.061	0.007	0.20
Phosphate	mg/L				1./	0 -	0.20	0.00	0.08
Aluminum	mg/L	0.1	0	0 -	0.50	0 -	0.39	0.00	0.28
Barium	mg/L	1	n	0.05 -	2.07		0.000	0.0001	0.20
Beryllium	mg/L		-	0 -	0.001	01 -	30.1	2.43	3.07
Boron	mg/L	0,005	<u>n</u>	0 =	0.027	0 -	0.008	0.001	0.002
Cadmium	mg/L	0.005		0 -	0.001	0	0.000	0	0.013
Chromium		0.05	- "		0.02	0		0	
Cobait	mg/L			0 -	0.15	0 -	0.29	0.01	0.504
	mg/L mg/l	0.01	а ь	0 -	0.04	<u> </u>		0	0.003
Lead	mg/L	0.01		0 -	0.63	0 -	0.92	0.10	0.199
Mancapage	mg/L	0.5		0 -	0.44	0 -	0.8	0.16	0.160
Malybdenum	mg/L	0.00	- u	0 -	1.1	0		0	
Nickel	mg/L			0 -	0.78	0		0	
Silica	ma/l			7.17 -	37.3	2.23 -	6.58	3.94	
Silver	ma/L			0		0 -	0.007	0.0001	
Strontium	ma/L			2.41 -	10.9	1.39 -	160	22.7	
Titanium	ma/L	1		0 -	0.011	0 -	0.1	0.01	
Vanadium	ma/L			0 -	0.07	0 -	0.016	0.001	
Zinc	ma/L	5	a	0 -	0.9	0 -	0.2	0.01	2.51
Thorium	mg/L	<u> </u>							
Zircon	mg/L								
Phenois	μg/L			180 -	47500	0 -	8	0.26	

Mid FLow Zone

h - health related objective a - aesthetic objective associated with taste, smell and colour

o - operational objective to ensure efficient treatment of water

Compo	bund	ODWO		Predict	ed	Ba	ckground	I Range in	Reasonable
	• · · · ·			East Qu	arry	1 1	Lower Flo	ow Zone	Use
	1			Landfill Le	achate	Rang	0	Average	
	units					1	otal # Sa	mples 48	Based on average
рН	pH units	6.5-8.5	0	7.4 –	12.83	6.75 -	8.22	7.38	LFZ
Conductivity	µmhos/cm			814 -	12750	1680 -	96200	24635	
TDS	mg/L	500	a	598 -	14256	1188 —	1E+05	24634	24634
COD	mg/L			800 -	5000	6 -	1460	<u>· 254</u>	
тос	mg/L			154 -	1310	0 -	532	57	
Alkalinity	mg CaCO ₃ /L	30-500	0	232	4550	72.9 –	305	200	350
Hardness	mg CaCO ₃ /L	80-100	0	109 -	2552	705.7 -	48390	9157	9157
Calcium	mg/L			343 -	1820	<u> 181 </u>	13200	2472	
Magnesium	mg/L			0 -	26.4	61.3 -	3710	718	
Sodium	mg/L	200	a	<u> 161 </u>	739	48.3 -	19100	3618	3618
Potassium	mg/L	· · · ·		1550 -	2360	0 -	460	74	
Chloride	mg/L	250	a	<u> </u>	161	159 -	60100	12278	12278
Fluoride	mg/L	1.5	h	0 -	3.9	0 -	1	0.28	0.58
Bromide	mg/L			0 -	78	0 -	771	132	
Sulphate	mg/L	500	a	715 -	3180	<u>134 –</u>	1960	917	917
Ammonia	mg/L			3 -	31	0.1 -	34	7.26	
TKN	mg/L	· .		<u> </u>	110	0.17 -	34	7.23	0.70
Nitrate	mg/L	10	h	0		0 -	1	0.11	2.58
Nitrite	mg/L	1	h	0.01 -	0.029	0 -	3.41	0.12	0.34
Phosphate	mg/L			0 -	1.7	0 -	1	0.17	0.07
Aluminum	mg/L	0.1	0	0 -	0.58	0 -	0.31	0.03	0.07
Barium	mg/L	1	h	0.05 -	2.07	0 -	0.28	0.09	0.32
Beryllium	mg/L			0 -	0.001	0 -	0.001	0.00004	0.50
Boron	mg/L	5	h	0 -	0.627	0 -	86.4	9.59	9.59
Cadmium	mg/L	0.005	h	0 -	0.001	0 -	0.467	0.020	0.020
Chromium	mg/L	0.05	h	0 -	0.02	0 -	0.05	0.002	0.014
Cobalt	mg/L			0 -	0.15	0 -	0.1	0.002	0.509
Copper	mg/L	1	a	0 -	0.15	0 -	0.26	0.010	0.506
Lead	mg/L	0.01	h		0.04	0 -	0.03	0.001	0.003
Iron	mg/L	0.3	a	0 -	0.03		2.5	0.10	0.229
Manganese	mg/L	0.05	a		0.44	0 -	2.5	0.39	0.369
Molybdenum	mg/L			0 -	0.79	0 -	0.3	0.01	
Nickel	mg/L			7 17	0.70	+ 69	14.1	0.005	
Silica	mg/L			<u> </u>	37.3	1.00 -	<u>14.1</u> 0 E	<u>4.31</u> 0.02	
Silver	mg/L			0.41	10.0	0 -	0.5	<u> </u>	
Strontium	mg/L			2.41 -	0.011	2.95 -	202	0.03	
	mg/L			0 -	0.011		0.15	0.03	
Vanadium	mg/L			0 -	0.07		0.023	0.002	2.52
	mg/L	5	a	0 -	0.9		0.2	0.04	2.52
	mg/L						0.03	0.01	
Zircon	∣ mg/L	l					0.03	0.01	1
Phenols	µg/L			180 -	47500	0 -	14.5	0.41	

Lower Flow Zone

h - health related objective
 a - aesthetic objective associated with taste, smell and colour
 o - operational objective to ensure efficient treatment of water

C	und		T	Prodi	cted	T	Bac	karound	Range in	Reasonable
Compo	Driur	00110		East C	uarry		ſ	Rocheste	r Shale	Use
					eachate	R	ano	• 1	Average	
·····	unite		-+			1	<u>ہے۔۔۔</u> ا	Total # Sa	mples 6	Based on average
PH	nH unite	65-85		7.4 -	12.83	7.04	_	8.3	7.60	Rochester
Conductivity	umbos/cm	2.0 0.0	<u> </u>	814 -	12750	15800		57100	41750	
TDS	ma/L	500	a	598 -	14256	11926	-	58440	40107	40107
COD	mg/L			800 -	5000	0	_	750	<u> </u>	
TOC	mg/L			154 -	1310	0	-	96	44	
Alkalinity	mg CaCO ₃ /L	30-500	0	232 -	4550	103	-	208	150	325
Hardness	mg CaCO ₂ /L	80-100	0	109 -	2552	3634	_	17830	12135	12135
Calcium	mg/L			343 -	1820	1030	_	5020	3378	
Magnesium	mg/L			0 -	26.4	251		1280	892	
Sodium	mg/L	200	a	161 -	· 739	2120		9240	6565	6565
Potassium	mg/L			1550 -	2360	63		319	201	
Chloride	mg/L	250	a	34 -	<u>161</u>	5370	_	30400	20695	20695
Fluoride	mg/L	1.5	h	0 -	3.9	0.1		0.6	0.3	0.60
Bromide	mg/L				78	52.6		302	225	1077
Sulphate	mg/L	500	a	715 -	3180	1160		1480	12//	12/1
Ammonia	mg/L			3 -	· <u>31</u>		-	23	1/	
TKN	mg/L			51	<u>· 110</u>	6.5		25	<u> </u>	2 55
Nitrate	mg/L	10	h	0.01)		_	0.4	0.07	0.30
Nitrite	mg/L	1	h	0.01 -	0.029	0.004		0.14	0.005	0.00
Phosphate	mg/L			<u> </u>	1./		_	<u> </u>	0.25	0.09
Aluminum	mg/L	0.1	0	<u> </u>	0.58	0.000	_	0.3	0.07	0.37
Barium	mg/L	1	n	0.05 -	2.07	0.030		0.204	0.100	
Beryllium	mg/L			0 -	0.001	2.07	<u> </u>	104	55 41	55.41
Boron	mg/L	5		0 -	0.027	2.07		0.006	0.001	0.002
Cadmium	mg/L	0.005		0 -	0.001	- 	0	0.000	0	0.013
Chromium	mg/L	0.05	<u> </u>	0 -	0.02		<u></u>		0	
CoDait	mg/L	4			0.15	0	_	0.1	0.02	0.508
Copper	mg/L	0.01	а	0 -	0.13		0		0	0.003
lead	mg/L	0.01		0 -	0.63	0	_	0.06	0.01	0.155
Mancapasa	mg/L	0.05	a	0 -	0.44	0.1		0.7	0.41	0.410
Molybdenum	ma/L	0.00	Ē	0 -	1.1		0		0	
Nickel	ma/L			0 -	0.78		0		0	
Silica	ma/L	· ·		7.17 -	. 37.3	2.77	_	_5.3	3.7	
Silver	ma/L				0		0		0	
Strontium	ma/L			2.41 -	· 10.9	14.3	-	98.6	66.1	
Titanium	mg/L	1		0 -	0.011	0	-	0.06	0.03	
Vanadium	mg/L			0 -	- 0.07	0		0.008	0.003	
Zinc	mg/L	5	a	0 -	- 0.9	0	_	0.2	0.035	2.52
Thorium	mg/L									
Zircon	mg/L									
Phenois	µg/L		Γ	180 -	- 47500	0	-	3	0.98	

Rochester Shale

•

h - health related objective

a – aesthetic objective associated with taste, smell and colour o – operational objective to ensure efficient treatment of water

	all concer	ntations	in µg/L				_	- 80 11		_			
Compound	1 1 10		0110		01			28-11			30-1		
MISA Group 20 - Acid Extractables		Type	HUP	max	min	avg	nex	min	avg	THELK	min	avg	
2345-TETRACH OROPHENO	······			ND	ND	ND	ND	ND	ND	ND	ND	ND	
2346-TETRACH OROPHENOL	100	н	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2356-TETRACHI OROPHENOI		<u>.</u>		ND	ND	ND	ND	ND	ND	ND	ND	ND	_
				ND	ND	ND	ND	ND	ND	ND	ND	ND	
2 3 5-TRICHLOBOPHENOL				ND	ND	ND	ND	ND	ND	ND	ND	ND	_
				NO	ND	NO	ND	ND	NO	ND	NO	ND	
		- <u>u</u>	1.05		ND			ND	NO	ND	NO		
		<u> </u>	1.20	ND	NU			ND	0.9571	848	42.4	250 84	
				NU	NU			ND	U.65/1	040 NO	42.4 ND	200.04	
			005	NU	NU			NU	ND	NU	ND	ND	
2,4-DICHLOROPHENOL	900		225	NU	NU	UN	NU	UN	NU	NU	NU		
2,6-DICHLOROPHENOL		<u>.</u>		ND	ND	ND	ND	ND	ND	ND	ND	ND	
4,6-DINITRO-O-CRESOL				ND	ND	ND	ND	ND	,ND	ND	ND	ND	
2-CHLOROPHENOL				ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-CHLORO-3-METHYLPHENOL				ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-NITROPHENOL				ND	ND	ND	ND	ND	ND	ND	ND	ND	
M-CRESOL & P-CRESOL				ND	ND	ND	21.2	ND	3.5333	1310	16.6	426.09	
O-CRESOL				ND	ND	ND	2.9	ND	0.4833	67.8	4.3	25.843	
PENTACHLOROPHENOL	60	A	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PHENOL				ND	ND	ND	176	ND	43.714	2330	184	1080.6	
NITROPHENOL					-		ND	ND		20	ND	10	
2-METHYL-4-6-DINITROPHENOL							ND	ND		21	ND	10.5	-
Misa Group 19 - Base/Neutral Extracta	bles												
ACENAPHTHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
5-NITROACENAPHTHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
ACENAPHTHYLENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
ANTHRACENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZ(A)ANTHRACENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZO(A)PYRENE	0.01	н	0.0025	ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZO(B)FLUORANTHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZO(G.H.I)PERYLENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZO(K)FLUORANTHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BIPHENYL				ND	ND	ND	ND	ND	ND	ND	ND	ND	
CAMPHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
1-CHLORONAPHTHALENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-CHLORONAPHTHALENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
CHRYSENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
DIBENZ(A,H)ANTHRACENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
FLUORANTHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
FLUORENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
INDENO(1,2,3-CD)PYRENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
INDOLE				ND	ND	ND	ND	ND	ND	54.3	ND	20.057	
1-METHYL NAPHTHALENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-METHYLNAPHTHALENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	_
NAPHTHALENE				ND	ND	ND	ND	ND	ND	122	ND	19.225	
PERYLENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
PHENANTHRENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
PYRENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZYL BUTYL PHTHALATE				ND	ND	ND	ND	ND	ND	0.6	ND	0.075	
BIS(2-ETHYLHEXYL)PHTHALATE				6	ND	1	10.4	ND	1.4857	36.4	ND	4.55	
DI-N-BUTYL PHTHALATE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
DI-N-OCTYL PHTHALATE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-BROMOPHENYL PHENYL ETHER				ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-CHLOROPHENYL PHENYL ETHER				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BIS(2-CHLOROISOPROPYL)ETHER				ND	ND	ND	ND	ND	NĎ	ND	ND	ND	
BIS(2-CHLOROETHYL)ETHER				ND	ND	ND	ND	ND	ND	ND	ND	ND	
DIPHENYL ETHER				ND	ND	ND	ND	ND	ND	ND	ND	ND	
	 			ND	ND	ND	ND	ND	ND	ND	ND	ND	
2.6-DINITROTOLUENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
BIS 2-CHLOBOETHOXYMETHANE				ND	ND	ND		ND	ND	ND	ND	ND	
DIPHENYLAMINE & N-NITROSODIPHA				ND	ND	ND	ND	ND	ND	ND	ND	ND	
N-NITROSODI-N-PROPYLAMINE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1		L								1 10		

 N-HIDSOD-N-PHOFILAMINE

 ODWO Ontario Drinking Water Objective

 (H - Health, A - Aesthetic, inter H - interim health)

 RUP - Reasonable Use Policy Guideline

 Calculated assuming background concentration equal to 0 μg/L

	ail concen	trations i	nµg/L		8-1			28-11			30-1		
Compound	Limit	Туре	RUP	mex	min	avg	max	min	avg	max	min	avg	
MISA Group 22 - Organochlorine Com	pounds						-0.000	NO	0.0004	0.001	NO	0.0002	
	┞───┼					NO	0.0008	ND	9E-05	ND	ND	ND	
	0.7	— 	0.175				0.0036			0.001			
AL PHA-RHC	┞─────┼	<u>.</u>		ND	ND	ND	0.0008	ND	0.0001	0.0015	ND	0.0004	
BFTA-BHC	qł		\	ND	ND	ND	ND	ND	ND	0.0043	ND	0.0012	
DELTA-BHC	┫───┤			ND	ND	ND	ND	ND	ND	0.005	ND	0.0006	
GAMMA-BHC	╏───┼		1	ND	ND	ND	ND	ND	ND	0.0008	ND	0.0001	
CHLORDANE	7	-H-	1.75	ND	ND	ND	ND	ND	ND	ND	ND	ND	
DDD	 †			ND	ND	ND	ND	ND	ND	0.001	ND	0.0001	
DDE				0.001	ND	0.0002	ND	ND	ND	ND	ND	ND	
DDT	30	н	7.5	ND	ND	ND	ND	ND	ND	0.001	ND	0.0001	
2,4-DDT				ND	ND	ND	ND	ND	ND	ND	ND	ND	
ENDOSULFAN I				ND	ND	ND	ND	ND	ND	0.001	ND	U,0001	
ENDOSULFAN II				ND	ND	ND	ND	ND	ND	ND	ND	ND	
ENDOSULFAN SULPHATE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
ENDRIN				ND	ND	ND	0.003	ND	0.0004	0.003	ND	0.0004	L
ENDRIN ALDEHYDE			·	ND	ND	ND	ND	ND	ND	ND	ND	ND	
HEPTACHLOR				0.0023	ND	0.0006	0.002	ND	0.0004	0.003	ND	0.0005	\vdash
HEPTACHLOR EPOXIDE				0.001	ND	0.0002	0.001	ND	0.0001	0.006	ND	0.001	
HEPTACHLOR + HEPTACHLOR EPOXIDE	3	inter H	0.75	0.0033	L		0.003			0.009		└──┬─┤	
METHOXYCHLOR	900	Н	225	ND	ND	ND	ND	ND	ND	ND	ND	ND	
MIREX			·	ND ,	ND	ND	ND	ND	ND	ND	ND	ND	
TOXAPHENE				ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB's	3	Н	0.75	ND	ND	ND	ND	ND	ND	0.3242	ND	0.0405	
MISA Group 17									0.0142		1-2-1	1 8100	
BENZENE	5	<u> </u>	1.25	ND	ND	ND	0.1	ND	0.0143	3.5	U.5	1.0125	
ETHYLBENZENE	2.4	A	1.2	0.2	ND	0.033	0.3	ND	0.0/14	- 0.8		0.2	-
STYRENE]	L	L	ND	ND	ND	ND	ND	21 574		NU NO	0.475	<u> </u>
TOLUENE	24		12	ND	ND	ND	151	ND	21.5/1	2		0.4/5	
0-XYLENE	300		150	ND	ND	ND	0.3		0.0714	2.3		0.3/5	
M-XYLENE + P-XYLENE	300		150	ND	ND	ND	0.4		0.1	2.4		0.4	
MISA Group 18		└───	 				10		NO	ND	ND	ND	t
ACROLEIN	[]	├ ────	Ļ	ND					ND			ND	t
ACRYLONITRILE		ļ	ļ								+		\vdash
MISA Group 16 - Halogenated VOC's	{	 	├ ───				1	-	ND	AID.	ND	ND	1
1,1,2,2-TETRACHLOROETHANE		ļ	 	ND								ND	
1,1,2-TRICHLOROETHANE	}	 	<u> </u>	H ND								0.1375	<u> </u>
1,1-DICHLOROETHANE	 	 	 	H-ND								ND	
1,1-DICHLOROETHYLENE		├ ───										ND	t -
1,2-DICHLOROBENZENE	200	H	50										
1,2-DICHLOROETHANE	5	Inter H	1.25	ND								NO	<u> </u>
1,2-DICHLOROPROPANE		 	 	H ND									<u> </u>
1,3-DICHLOROBENZENE		 		ND tim								ND	
1,4-DICHLOROBENZENE	<u>5</u>	н	1.25									ND	
BROMOFORM		 	 										1-
BROMOMETHANE		 	+										+
CARBON TETRACHLORIDE	5	<u>н</u>	1.25			H ND						0 0975	+
CHLOROBENZENE												NO	+
CHLOROFORM	4	 	<u> </u>		+ ND								+
CHLOROMETHANE	·I	 		ND			ND						+
CIS-1,3-DICHLOROPROPYLENE	<u> </u>												+
DIBROMOCHLOROMETHANE	·				ND		ND						+
ETHYLENE DIBROMIDE		<u> </u>	 	ND					21107			11 842	+
METHYLENE CHLORIDE		<u> </u>		330		00	12.7		4.110/	- 01.5 		11.043 NO	+
TETRACHLOROETHYLENE		 					ND						+
TRANS-1,2-DICHLOROETHYLENE		 	<u> </u>	ND			ND						+
TRANS-1,3-DICHLOROPROPYLENE	_	<u> </u>	+	ND			ND					0.037=	+
TRICHLOROETHYLENE	50	н	12.5	ND			ND					10.0010	+
TRICHLOROFLUOROMETHANE			 	ND			ND						+
VINYL CHLORIDE			_	ND									+
1,1,1-TRICHLOROETHANE	- 		 			+	ND			0,4		1.2	+
DICHLOROMETHANE	50	H	12.5	`	+	+	- ND						+
CIS-1,2-DICHLOROETHENE		Į			+	+	ND						+
BROMODICHLOROMETHANE		Į	Į	ND			<u>' ND</u>		H ND	ND			·
CHLOROETHANE		·	+	-	+	+	ND			ND			+
1,2-DIBROMOETHANE		1	<u></u>	<u> </u>	<u> </u>	<u> </u>	ND						1

ODWO Ontario Drinking Water Objective (H – Health, A – Aesthetic, inter H – interim health) RUP – Reasonable Use Policy Guideline Calculated assuming background concentration equal to 0 µg/L

•

	all conce	ODWO	in µg/L		30-1				31-11				32-11		
Compound	Limit	Туре	RUP	mex	min	avg		mex	min	avg		mex	min	avg	
MISA Group 20 - Acid Extractables					ND	1.0149		- 20	ND	0 4142	-	ND	ND	ND	╂
	100	н	25	3.7	ND	1.0429		ND	ND	ND	-	ND	ND	ND	1-
2.3.5.6-TETRACHLOROPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2,3,4-TRICHLOROPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2,3,5-TRICHLOROPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2,4,5-TRICHLOROPHENOL				7.1	0	1.2143		ND	ND	ND		ND	ND	ND	╞
2,4,6-TRICHLOROPHENOL	5	н	1.25	ND	ND	ND		ND	ND	ND		ND	ND	1260	
				584	79.5	253.19 NO		231 ND	2.3 NO	125.21 ND	-	4000 ND	51.5 ND	ND	+
	900	н	225	89	ND	1.1125		ND	ND	ND		ND	ND	ND	+
				ND	ND	ND		ND	ND	ND		ND	ND	ND	+
4 6-DINITRO-O-CRESOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	+
2-CHLOROPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	T
4-CHLORO-3-METHYLPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	
4-NITROPHENOL				ND	ND	ND		ND	ND	ND		ND	ND	ND	T
M-CRESOL & P-CRESOL			 	1040	104	313.43		1310	ND	235.21		8540	667	4715.3	1
O-CRESOL				56.2	18.2	41.614		66.1	ND	27.129		245	39.5	166.93	1_
PENTACHLOROPHENOL	60	A	30	ND	ND	ND		3	ND	0.375		ND	ND	ND	
PHENOL				1590	ND	761.75		1800	ND	262.04		13500	662	5830.3	+
				ND ND	ND	ND		20		10		ND	ND		+
2-METHYL-4-0-DINITHOPHENOL Miss Group 19 - Base/Neutral Extracts	bles.		L								-				+
ACENAPHTHENE		· · · · ·	r	1.1	ND	0.1375		ND	ND	ND		4.8	ND	1.15	
5-NITROACENAPHTHENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
ACENAPHTHYLENE				1.8	ND	0.225		ND	ND	ND		4	ND	0.925	<u> </u>
ANTHRACENE				0	ND	0		ND	ND	ND		2.1	ND	0.4375	+
BENZ(A)ANTHRACENE		L		ND	ND	ND		ND ND	ND	NU		ND	ND		+
	0.01	н	0.0025	ND	ND				ND	ND		ND	ND	ND	,
BENZO(B)FLOORANTHENE			<u> </u>	ND	ND	ND		ND	ND	ND		ND	ND	ND	
BENZO(K)FLUORANTHENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
BIPHENYL				ND	ND	ND		ND	ND	ND		ND	ND	ND	
CAMPHENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	_
1-CHLORONAPHTHALENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2-CHLORONAPHTHALENE			 	ND	ND	ND		ND	ND	ND		ND	ND		+
				ND						ND		ND	ND	ND	,
FLUOBANTHENE				1.2	ND	0.225		ND	ND	ND		4.1	ND	0.6	1
FLUORENE			<u> </u>	2.9	ND	0.65		ND	ND	ND		2.3	ND	0.5875	
INDENO(1,2,3-CD)PYRENE				0	ND	0		ND	ND	ND		ND	ND	ND	/
INDOLE				38.3	ND	19.2		42.3	ND	6.0429		162	20.5	58.914	1
1-METHYL NAPHTHALENE				3.9	ND	1.0714		ND	ND	ND		0	ND	0	<u> </u>
			<u> </u>	17.5	ND	4.5286		ND	ND	NU 24975		2.5	40.0	0.0143	+
			<u> </u>	300 ND	0.5 NO	91.875		18.0 ND	ND	2.4675		ND	ND	ND	,+
PHENANTHRENE				5.3	ND	1.6125		0.2	ND	0.025		9.2	ND	1.675	;†
PYRENE			1	0.9	ND	0.1875		ND	ND	ND		3.8	ND	0.5375	1
BENZYL BUTYL PHTHALATE				0.6	ND	0.075		ND	ND	ND		ND	ND	ND	1
BIS(2-ETHYLHEXYL)PHTHALATE				26.2	ND	3.4875		10.7	ND	1.3375		2.2	ND	0.275	<u></u>
DI-N-BUTYL PHTHALATE			L	ND	ND	ND		25.5	ND	3.1875		ND	ND	ND ND	<u>'</u>
				ND	ND ND	ND	└──	0.0		1.05		ND			<u>-</u>
				ND			-			ND			ND	ND	;+ -
BIS(2-CHLOROISOPROPYL) FTHER				ND	ND	ND	-	ND	ND	ND		ND	ND	ND	,十一
BIS(2-CHLOROETHYL)ETHER	1	t	1	ND	ND	ND		ND	ND	ND		ND	ND	ND	1
DIPHENYL ETHER				ND	ND	ND		ND	ND	ND		ND	ND	ND	江
2,4-DINITROTOLUENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	1
2,6-DINITROTOLUENE				ND	ND	ND		ND	ND	ND		ND	ND		<u>' </u> _
BIS(2-CHLOROETHOXY)METHANE				ND	ND	ND	<u> </u>	ND				ND		ND	<u>'</u>
	 		1	10.3 ND		1.4714	-					17.9 ND		ND	; -
ODWO Ontario Drinking Water Objective	1	I					<u> </u>								<u> </u>
(H - Health, A - Aesthetic, inter H - in	terim heal	th)													
RUP - Reasonable Use Policy Guideline															
Calculated assuming background conce	entration e	quai to 0)µg/L												

	all concer	ntrations i	n µg/L		3011				31-11		-		32-11		
Compound	Limit	Туре	RUP	mex	min	avg		max	min	avg		max	min	avg	
MISA Group 22 - Organochlorine Com	pounds				ND	ND		0.002	NO	0.0004	-	0.004		0.0006	
				0.019	ND	0.0052		0.0018	ND	0.0003		ND	ND	ND	
ALDRIN + DIELDRIN	0.7	н	0.175	0.019				0.0038				0.004			
ALPHA-BHC				0.0026	ND	0.0004		ND	ND	ND		0.012	ND	0.004	
BETA-BHC				0.034	0.0046	0.0228		0.0022	ND	0.0006		ND	ND	ND	
DELTA-BHC				0.0025	ND	0.0003		0.0021	ND	0.0003	_	ND		0.000#	
GAMMA-BHC				0.002	ND	0.0003		0.002	ND	0.0005		NO		ND	
CHLORDANE	7	н	1.75	ND	ND	ND			ND	ND		0.01	ND	0.0013	
DDD				0.0035	ND	0.0007		ND	ND	ND	-	0.007	ND	0.0009	
DDE	20	н	75	0.0021	ND	0.0004		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
ENDOSLI FAN I				0.0027	ND	0.0003		ND	ND	ND		0.004	ND	0.0005	
ENDOSULFAN II				ND	ND	ND		0.006	ND	0.0008		0.052	ND	0.0065	
ENDOSULFAN SULPHATE				ND	ND	ND		ND	ND	ND		0.076	ND	0.0095	
ENDRIN				0.003	ND	0.0005		0.002	ND	0.0003		0.0047	ND	0.0006	
ENDRIN ALDEHYDE				ND	ND	ND		ND	ND	ND		NU 0.0150		0.0020	
HEPTACHLOR				0.0026	ND	0.0006		0.004	ND	0.0011		0.0159		0.0039	
		inter L	0.76	0.02		0.0026		0.001		0.0002	_	0.0524		0.0012	
HEPTACHLOR + HEPTACHLOR EPOXIDE	3		0./3	0.0220 ND	ND	NO		ND	ND	ND	-	0.024	ND	0.003	
	- 200		223		ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND	 	ND	ND	ND		ND	ND	ND	
PCR'e	3	н	0.75	ND	ND	ND		0.3178	ND	0.0397		ND	ND	ND	
MISA Group 17	· · · · ·														<u> </u>
BENZENE	5	Н	1.25	13	3.1	6.8875		1	ND	0.5625		2.2	ND	1.525	<u> </u>
ETHYLBENZENE	2.4	A	1.2	1.1	ND	0.5625		0.3	ND	0.0625		6.2	ND	2.5375	–
STYRENE				ND	ND	ND	-	<u></u>		0		1.1	ND ND	0.38/5	+
TOLUENE	24	A .	12	6.2	2.7	4.4375		0.9		0.425		10.0		3.23	+-
O-XYLENE	300	A	150	4.6	1.3	2.475	<u> </u>	0.8		0.225		25		1.13	1
M-XYLENE + P-XYLENE	300	A	150	4.8	<u> </u>	3		0.8		0.220	-				+
		<u> </u>		ND	ND	ND		ND	ND	ND		ND	ND	ND	
	l	<u> </u>		ND	ND	ND	1	ND	ND	ND		ND	ND	ND	
MISA Group 16 - Halogenated VOC's	l	1		1	1										
1.1.2.2-TETRACHLOROETHANE		1		ND	ND	ND		ND	ND	ND		ND	ND	ND	1
1,1,2-TRICHLOROETHANE				ND	ND	ND		ND	ND	ND		ND	ND		
1,1-DICHLOROETHANE				1.5	ND	1.125		0.5	ND	0.15		0.5		0.2875	
1,1-DICHLOROETHYLENE				ND	ND	ND	 	0	ND	0		ND			+
1,2-DICHLOROBENZENE	200	H	50	0.4	ND	0.075	–	ND		NU		0.2 ND			
1,2-DICHLOROETHANE	5	inter H	1.25												+
1,2-DICHLOROPROPANE		 					+								+
	1		1.05			0.0825	+			0.0125		49.6	ND	12.275	
1,4-DICHLOHOBENZENE	°	<u> </u>	1.25			ND	+	ND		ND		ND	ND	ND	
	 					ND	+	ND	ND	ND		ND	ND	ND	
	5	н	1.25	ND	ND	ND	\vdash	ND	ND	ND	_	ND	ND	ND	
CHLOBOBENZENE	1	1		1.1	ND	0.3125		ND	ND	ND		ND	ND	ND	
CHLOROFORM	1	1	<u> </u>	ND	ND	ND		ND	ND	ND		ND	ND	ND	
CHLOROMETHANE	1			ND	ND	ND		ND	ND	ND		ND	ND	ND	
CIS-1,3-DICHLOROPROPYLENE				ND	ND	ND		ND	ND	ND		ND	ND		<u>'</u>
DIBROMOCHLOROMETHANE				ND	ND	ND		ND	ND	ND	<u> </u>	ND		ND	<u>'</u>
ETHYLENE DIBROMIDE			ļ	ND	ND	ND		ND		ND		ND		NU	<u>'</u>
METHYLENE CHLORIDE	<u> </u>	ļ		42.5	ND	6.0714	+	61.2		8.7429		380		04.280	<u>-</u>
TETRACHLOROETHYLENE	I	 		0.6		0.075	+			0.0125	<u> </u>				;
TRANS-1,2-DICHLOROETHYLENE	 	.	 	0.2	ND ND	0.025	+			0.0125 ND					;
TRANS-1,3-DICHLOROPROPYLENE		<u> </u>				0 7275				0 375		04		0.175	;
		<u> </u>	12.5	1./ NO		0.7375 ND	+-	ND		ND	 	ND	ND	NC	
		+	 				+-	ND	ND	ND	<u> </u>	ND	ND	NC	5
	1	+	1	0.4	ND	0.4	+	ND	ND	ND	1	ND	ND	NC	2
	50	н	12.5	ND	ND	ND	1	ND	ND	ND		ND	ND	NC)
CIS-1.2-DICHLOROETHENE	<u> </u>	<u>† – ''</u>	1	0.6	ND	0.6	1	0.2	ND	0.2		0.2	ND	0.2	2
BROMODICHLOROMETHANE	1	1	1	ND	ND	ND		ND	ND	ND		ND	ND	NC	2
CHLOROETHANE	L			ND	ND	ND		ND	ND	ND		ND	ND		2
1,2-DIBROMOETHANE				ND	ND	ND		ND	ND	ND		ND	ND	N	2
ODWO Ontario Drinking Water Objective															
(H - Health, A - Aesthetic, inter H - in	iterim hea	lith)													
RUP - Reasonable Use Policy Guideline	ontrot!														
Calculated assuming background conc	envation	equal to (μgy∟												

	all concei	neations	in µg/L		32_1				38		- 1		44-1		
Compound	Limit	Туре	RUP	mex	min	avg		mex	min	avg		max	min	avg	
MISA Group 20 - Acid Extractables									NO						
2,3,4,5-TETRACHLOROPHENOL				ND	ND	ND		ND	ND	NU		ND	ND		
2,3,4,6-TETRACHLOROPHENOL	100	н	25	NU			_		ND	ND	-	ND			
2,3,5,6-TETRACHLOROPHENOL					NO	ND		NO	NO	ND		ND	ND	ND	
				NO	NO			ND	ND	ND		ND	ND	ND	
2,3,5-TRICHLOROPHENOL				110	110	110		NO	NO	ND					
			1.05					ND	ND	ND		ND		ND	
			1.20	147	ND	28.05		1.8	ND	0 225		ND	ND	ND	
				ND	ND	ND		ND	ND	ND	-1	ND	ND	ND	
	900	н	225	1.5	ND	0.1875		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND	-	ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				1000	NID	102.07		0.5	ND	0	-	ND	ND	ND	
				R1 0		10.814		6.8	ND	0.97		ND	ND	ND	
	-	Δ	30	ND	ND	ND		ND	ND	ND		ND	ND	ND	
PHENOL	<u> </u>	<u> </u>		1780	ND	557.16		25.5	ND	8.5		ND	ND	ND	
NITROPHENOL				20	ND	10		40.3	ND	13.43					
2-METHYL-4-6-DINITROPHENOL				21	ND	10.5		ND	ND	ND					
Misa Group 19 - Base/Neutral Extracta	bles														_
ACENAPHTHENE				0.5	ND	0.0625		ND	ND	ND		ND	ND	ND	
5-NITROACENAPHTHENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
ACENAPHTHYLENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
ANTHRACENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
BENZ(A)ANTHRACENE				0.8	ND	0.1		ND	ND	ND		ND			
BENZO(A)PYRENE	0.01	н	0.0025	ND	ND	ND			NU	ND		NU	ND	ND	
BENZO(B)FLUORANTHENE					NU	ND		ND		ND		ND	ND	ND	
BENZO(G,H,I)PERTLENE					ND				ND	ND		ND	ND	ND	
BIDLENM				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2-CHLORONAPHTHALENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
CHRYSENE	1			0.9	ND	0.1125		ND	ND	ND		ND	ND	ND	
DIBENZ(A,H)ANTHRACENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
FLUORANTHENE				0.8	ND	0.1		ND	ND	ND		ND	ND	ND	
FLUORENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
INDENO(1,2,3-CD)PYRENE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
INDOLE				21.4	ND	3.4		ND	ND	ND		ND	ND	ND	
1-METHYL NAPHTHALENE			ļ	ND	ND	ND		ND	ND	ND			ND	ND	
2-METHYLNAPHTHALENE				ND		ND		NU	NU				NU		
DEDM ENE	I		 	16.3		4.1					_				
			I			0.175			ND	ND		ND	ND	ND	
				ND		ND		ND	ND	ND		ND	ND	ND	
BENZYI BUTYI PHTHALATE				ND	ND	ND		ND	ND	ND		ND	ND	ND	
BIS(2-ETHYL HEXYL)PHTHALATE			<u> </u>	2.4	0	0.5625		4.6	ND	0.9875		ND	ND	ND	
DI-N-BUTYL PHTHALATE			1	ND	ND	ND	-	ND	ND	ND		ND	ND	ND	
DI-N-OCTYL PHTHALATE			1	ND	ND	ND		2	ND	0.5		ND	ND	ND	
4-BROMOPHENYL PHENYL ETHER				ND	ND	ND		ND	ND	ND		ND	ND	ND	
4-CHLOROPHENYL PHENYL ETHER	1			ND	ND	ND		ND	ND	ND		ND	ND	ND	
BIS(2-CHLOROISOPROPYL)ETHER				ND	ND	ND		ND	ND	ND		ND	ND	ND	
BIS(2-CHLOROETHYL)ETHER				ND	ND	ND		ND	ND	ND		ND	ND	ND	
DIPHENYL ETHER				ND	ND	ND		ND	ND	ND		ND	ND	ND	
2,4-DINITROTOLUENE	I		ļ	ND	ND	ND	I	ND	ND	ND		ND	ND	ND	_
2.6-DINITROTOLUENE	<u> </u>		ļ	ND	ND	ND	ļ	ND	ND	ND		ND		ND	
BIS(2-CHLOROETHOXY)METHANE	Į	 	ļ	ND				ND		ND ND		ND			<u> </u>
DIPHENYLAMINE & N-NITROSODIPHA	 					ND		ND ND				ND			+
N-NITHOSOUI-N-PROPYLAMINE	I	L	<u> </u>		I ND		L					UN			1

ODWO Ontario Drinking Water Objective (H – Health, A – Aesthetic, inter H – interim health) RUP – Reasonable Use Policy Guideline Calculated assuming background concentration equal to 0 μg/L

	all concer	ntrations i	n µg/L		33-1				36-1			·	44-1	<u></u>	
Compound	Limit	Туре	RUP	max	min	avg		mex	min	avg		max	min	avg	
MISA Group 22 - Organochlorine Com	pounds	r		0.002	ND	0.0007		ND	ND	ND		ND	ND	ND	
DIELDRIN				0.0415	ND	0.0145		0.0005	ND	6E-05		ND	ND	ND	
ALDRIN + DIELDRIN	0.7	<u> </u>	0.175	0.0435				0.0005				0		10	
ALPHA-BHC				0.015	ND	0.0049		ND	ND	ND		ND	ND		\vdash
BETA-BHC				0.027	ND	0.0131		ND	ND	ND					-
DELTA-BHC				ND	ND	ND 0.0004						ND	ND	ND	
GAMMA-BHC			1 75	0.0005		0.0001		ND	ND	ND		ND	ND	ND	
			1./5	0.004		0.0009		ND	ND	ND		ND	ND	ND	
DDE				0.0026	ND	0.0006		ND	ND	ND		ND	ND	ND	
DDT	30	н	7.5	ND	ND	ND		ND	ND	ND		ND	ND	ND	
24-DDT				ND	ND	ND		ND	ND	ND		ND	ND	ND	-
ENDOSULFAN I				ND	ND	ND		ND	ND -	ND	 	ND	ND		+
ENDOSULFAN II				ND	ND	ND	<u> </u>	ND	ND	ND ND		ND ND			+
ENDOSULFAN SULPHATE				ND	ND	ND	<u> </u>	NU		ND			ND	ND	+
ENDRIN	 			0.0047	ND ND	0.0012						ND	ND	ND	+-
				0.002		0.0008		0.087	ND	0.011	1-	ND	ND	ND	
				0.0008	ND	0.0001	<u> </u>	ND	ND	ND		ND	ND	ND	
HEPTACHLOR + HEPTACHLOR EPOXIDE	3	inter H	0.75	0.0038				0.087				0			
METHOXYCHLOR	900	н	225	ND	ND	ND		ND	ND	ND	 	ND	ND	ND	
MIREX				ND	ND	ND	 	ND	ND	ND	 	ND ND	ND ND		+
TOXAPHENE				ND	ND	ND		ND 4 m	ND	ND 0 5110	├				+
PCB's	3	Н	0.75	ND		ND		4.09		0.5113	+				+
MISA Group 17	=		.1 25	1.0		0.8375	+	ND	ND	ND	1-	ND	ND	ND	
	24	A	1.23	0.1	ND	0.0125	1	ND	ND	ND		ND	ND	ND	
STYRENE				0	ND	0	Ĺ	ND	ND	ND		ND	ND	ND	
TOLUENE	24	A	12	1.8	ND	0.625		0.2	ND	0.025		0.2	ND	0.1	
O-XYLENE	300	A	150	0.9	ND	0.1625		ND	ND	ND	<u> </u>	ND	ND	ND	-
M-XYLENE + P-XYLENE	300	A	150	1.1	ND	0.2375	 	0.2	ND	0.025		0.1		0.05	
MISA Group 18			ļ				–	NO	ND	ND	+	ND		ND	1-
	I			ND ND			+				+	ND	ND	ND	+
ACHYLONITHILE	<u> </u>						+	t		1	1-	1	1		
1 1 2 2-TETRACHI OROFTHANE	l			ND	ND	ND	1	ND	ND	ND		ND	ND	ND	
1.1.2-TRICHLOROETHANE	1			ND	ND	ND	1	ND	ND	ND		ND	ND	ND	
1.1-DICHLOROETHANE				0.1	ND	0.0125		ND	ND	ND		ND	ND	ND	1
1,1-DICHLOROETHYLENE				ND	ND	ND		ND	ND	ND		ND			2
1,2-DICHLOROBENZENE	200	н	50	ND	ND	ND	+	ND	ND		+	ND			<u>'</u>
1,2-DICHLOROETHANE	5	inter H	1.25	ND	ND	ND	-	ND		ND	+	ND ND			<u>-</u> -
1,2-DICHLOROPROPANE				ND	ND		+	ND			+				;
1,3-DICHLOROBENZENE	<u> </u>	<u> </u>	1 05	ND Ad	ND ND	0.0125	+				+	ND	ND		5
	5	<u>н</u>	1.25			ND	+		ND	ND	1	ND	ND	ND	5
BROMONETHANE	1	<u> </u>			ND	ND	+	ND	ND	ND		ND	ND	NC)
CARBON TETRACHI ORIDE	5	н	1.25		ND	ND	\mathbf{T}	ND	ND	ND		ND	ND	NC	
CHLOROBENZENE	1	1		ND	ND	ND		ND	ND	ND		ND	ND	NC	24
CHLOROFORM	1	L		ND	ND	ND		ND	ND	ND	4_	ND	ND	NC	
CHLOROMETHANE				ND	ND	ND		ND	ND	ND	4	ND	ND		<u>-</u> -
CIS-1,3-DICHLOROPROPYLENE	I		Į	ND	ND	ND		ND		ND		ND			-15
DIBROMOCHLOROMETHANE		<u> </u>	 								<u>-</u>			N	51-
						0 7957		202		41.714	+-	ND	ND	NC	5
			<u> </u>	08.5 ND		ND	, 			NO	1	ND	ND	NC	2
TRANS-12-DICHI OROSTHM ENE	1		 				+	ND	ND	ND		ND	ND	NC	2
TRANS-1.3-DICHLOROPROPYLENE	1	1	1	ND	ND	ND		ND	ND	NC		ND	ND	NC	2
TRICHLOROETHYLENE	50	н	12.5	0.3	ND	0.1		ND	ND	NC		ND	ND	NC	2
TRICHLOROFLUOROMETHANE	1	1	1	NC	ND	ND		ND	ND	NC		ND	ND	N	2
VINYL CHLORIDE				NC	ND	ND		ND	ND	NC	2	ND			4
1,1,1-TRICHLOROETHANE				NC	ND	ND	1_	ND	ND		<u>'</u>				;–
DICHLOROMETHANE	50	H	12.5	NC			!				<u>-</u>				(-
CIS-1,2-DICHLOROETHENE	·	<u> </u>	ļ				<u>-</u> -				<u>'</u>				51-
BROMODICHLOROMETHANE		+	 				<u>-</u> -				;	NO			5
			+				+				5-	NC			5
	1	1	1	1 INC			<u> </u>				. I				
(H - Health A - Aesthetic inter H - in	terim hee	lith)													
RUP - Reasonable Use Policy Guideline															
Calculated assuming background conc	entration	equal to () μg/L												

•

-	all conce	ntrations	in µg/Ľ				
Compound		UWU			<u>эл-н, 5</u>		
	Limit	Туре	RUP	max	min	avg	
MISA Group 20 - Acid Extractables							
	100	L	25	ND	ND	ND	
2356-TETRACHLOROPHENOL	- 100			ND	ND	ND	
2.3.4-TRICHLOROPHENOL				ND	ND	ND	
2.3.5-TRICHLOROPHENOL				ND	ND	ND	
2 4 5-TRICHLOBOPHENOL							
2.4.6-TRICHLOROPHENOL	. 5	н	1.25	ND	ND	ND	
2,4-DIMETHYLPHENOL				ND	ND	ND	
2,4-DINITROPHENOL				ND	ND	ND	
2,4-DICHLOROPHENOL	900	Н	225	ND	ND	ND	
2,6-DICHLOROPHENOL				ND	ND	ND	
4,6-DINITRO-O-CRESOL				ND	ND	ND	
2-CHLOROPHENOL				ND	ND	ND	
4-CHLORO-3-METHYLPHENOL				ND	ND	ND	
4-NITROPHENOL				ND	ND	ND	
M-CRESOL & P-CRESOL				1690	5	847.5	
O-CRESOL				528	ND	264	
PENTACHLOROPHENOL	60	A	30	ND	ND	ND	
PHENOL				5970	292	3131	
NITROPHENOL							
2-METHYL-4-6-DINITROPHENOL			L				
Misa Group 19 - Base/Neural Extracta	Dies			33	ND	18.5	
				ND	ND	ND	
ACENAPHTHYLENE				ND	ND	ND	1
ANTHRACENE				17.5	ND	8.75	
BENZ(A)ANTHRACENE				ND	ND	ND	
BENZO(A)PYRENE	0.01	Н	0.0025	ND	ND	ND	
BENZO(B)FLUORANTHENE				ND	ND	ND	
BENZO(G,H,I)PERYLENE				ND	ND	ND	
BENZO(K)FLUORANTHENE				ND	ND	ND	
BIPHENYL				ND		ND	
				ND		ND	
				ND	ND	ND	
CHRYSENE				ND	ND	ND	
DIBENZAH)ANTHRACENE				ND	ND	ND	
FLUORANTHENE				22.1	ND	11.05	
FLUORENE				25.4	ND	12.7	
INDENO(1,2,3-CD)PYRENE				ND	ND	ND	
INDOLE				ND	ND	ND	
			ļ	17.4	ND	8.7	
				23.1	ND	11.55	
				382		191 NO	
				19 2 2		21 85	
PYRENE				17.7	ND	8.85	
BENZYL BUTYL PHTHALATE				ND	ND	ND	
BIS(2-ETHYLHEXYL)PHTHALATE			<u> </u>	ND	ND	ND	
DI-N-BUTYL PHTHALATE			<u> </u>	ND	ND	ND	
DI-N-OCTYL PHTHALATE				ND	ND	ND	
4-BROMOPHENYL PHENYL ETHER				ND	ND	ND	
4-CHLOROPHENYL PHENYL ETHER				ND	ND	ND	
BIS(2-CHLOROISOPROPYL)ETHER				ND	ND	ND	
BIS(2-CHLOROETHYL)ETHER			ļ	ND	ND	ND	
		<u> </u>	ļ	ND	ND	ND	
						NU	
				ND		ND	
N-NITROSODI-N-PROPYLAMINE			<u> </u>	ND	ND	ND	
		L					-

ODWO Ontario Drinking Water Objective (H - Health, A - Aesthetic, inter H - interim health) RUP -- Reasonable Use Policy Guideline Calculated assuming background concentration equal to 0 µg/L

.
Table D2: Assessment of Critical Organic Contaminants

all concentrations in µg/L					57-11-5	3	_
Compound	Limit	Туре	RUP	max	min	avg	
MISA Group 22 - Organochlorine Com	pounds			0.003	ND	0.0015	
				ND	ND	ND	
ALDRIN + DIELDRIN	0.7	н	0.175	0.003			
ALPHA-BHC				ND	ND	ND	
BETA-BHC				ND	ND	ND	
DELTA-BHC				ND	ND	ND	
GAMMA-BHC				0.002	ND	0.001	
CHLORDANE	7	Н	1.75	ND	ND	ND	
DDD				ND	ND	ND	
DDE				ND	ND	ND	
DDT	30	н	7.5	ND	ND	ND	
2,4-DDT				ND	ND	ND	
ENDOSULFAN I				ND	ND	ND	
ENDOSULFAN II				ND	ND	ND	
ENDOSULFAN SULPHATE				ND	ND	ND	
ENDRIN				ND	ND	ND	
				ND	ND	ND	
HEPTACHLOR				0.006	0.002	0.004	
			~ ===	ND	ND	ND	
HEPTACHLOR + HEPTACHLOR EPOXIDE	3	inter H	0.75	0.006			——I
METHOXYCHLOR	900	н	225	ND	ND	ND	
MIREX				ND	ND	ND	
TOXAPHENE				ND	ND	ND	
PCB's	3	н	0.75	ND	ND	ND	
MISA Group 17			1.05			40.75	
BENZENE	5	H	1.25	21.2	0.3	10.75	
	2.4	A	1.2	5.5		2.75	
STYRENE				NU		NU	
TOLUENE	24	A	12	22.5	0.2	11.35	
	300	A	150	17.1	0.3	8./	
M-XYLENE + P-XYLENE	300	A	150	22.8	0.5	11.05	<u> </u>
					· · · ·		
MISA Crown 16 Holoconstad VOC's							
				ND	ND	NO	
				ND	ND	ND	
				ND	ND	ND	
				ND	ND	ND	
	200	н	50	ND	ND	ND	
	- 200	inter H	1 25	ND	ND	ND	
			1.25			ND	
1 3-DICHLOROBENZENE						ND	
	5	н	1 25			ND	
BROMOFORM			1.20				
BROMOMETHANE			<u> </u>		ND	ND	
CABBON TETRACHI ORIDE	5	н	1 25	ND		ND	
CHLOBOBENZENE				ND		ND	
CHLOROFORM			<u> </u>	ND	ND	NO	
				ND	ND	ND	
CIS-1 3-DICHLOROPROPYLENE						ND	
	t			ND			
FTHYLENE DIBROMIDE				ND			
METHYLENE CHI ORIDE			,				
	 			ND		ND	
TRANS-1 2-DICHI OBOETHMI ENE				NO	ND	ND	
TRANS-1 3-DICHI OROPROPY ENE				ND			├
	50	ц.	125		ND		┼
			12.3	ND			+
			<u> </u>			ND	
				- "			
	50	<u>н</u>	125	1	<u> </u>		<u> </u>
CIS-1 2-DICHLOBOETHENE		<u>├''</u>	12.3				
BROMODICHI OROMETHANE	I		<u> </u>	ND		NO	+
CHI OBOETHANE	l			<u> </u>	- ""		├
	l	ł	 	ł	<u> </u>	<u> </u>	├ ─-
1,2-"DIDRUMUE I MAINE	1	1		L	L	L	1 1

ODWO Ontario Drinking Water Objective
 (H – Health, A – Aesthetic, inter H – interim health)
 RUP – Reasonable Use Policy Guideline
 Calculated assuming background concentration equal to 0 µg/L

1 .

Appendix E

Water Budget Estimate of Leachate Production

Long-term meteorological data for the Hamilton A meteorological station have been reviewed to prepare a water budget for this site.

It is estimated that the mean annual precipitation at Hamilton A is 890 mm per year, based on 31 years of meteorological data from 1959 to 1990. There is some variation, from year to year, in the total annual precipitation. It has been estimated that the total annual precipitation varies from 793 mm to 988 mm during 13 out of 20 years. This range is equivalent to a variation of one standard deviation of annual precipitation about the mean value.

The distribution of the precipitation varies from month to month, as shown on Figure D1 for a normal year.

A Water Balance has been prepared using the method described in Thornthwaite and Mather (1957). The mean annual evapotranspiration is estimated to be 552 mm, based on an assumed soil moisture storage of 100 mm (Figure D2). The mean annual water surplus is calculated to be 338 mm. The annual surplus is likely to range from 268 mm to 414 mm during 13 out of 20 years.

The distribution of the surplus water on a monthly basis through a normal year is shown on Figure D1. It shows that a significant surplus of 412 mm occurs during the autumn, winter and spring months and a deficit of 74 mm occurs during the summer.

The water surplus includes both the surface runoff and infiltration components of a water balance. Site specific conditions like soils and topography need to be evaluated in order to partition the surplus.

Reference:

Thornthwaite C. W., and J. R. Mather:

1957 Instructions And Tables For Computing Potential Evapotranspiration And The Water Balance; Drexel Institute of Technology, Laboratory Of Climatology, Publications In Climatology, Volume X, Number 3, 1957, 311 pp.

1990 WATER BALANCE SUMMARY 1 HAMILTON AIRPORT, 1959 FIGURE D.1

CALCULATED USING THORNTHWAITE METHOD, ASSUMED SOIL MOISTURE CAPACITY: 100 MM BLL 44-405, NAMOSIWATBUDI. CH3, JJPM, 94.03.24

GARTNEH LEE

FIGURE D.2 WATER BALANCE SUMMARY FOR HAMILTON AIRPORT, 1959 - 1990

COMPONENTS OF WATER BALANCE

PRECIPITATION

EVAPOTRANSPIRATION

Step 1:

Leachate will be produced at this site from the infiltration of rain or melt water into the wastes.

Assumptions

Water available for infiltration is calculated from the water budget presented in Appendix C. The average annual water surplus is 338 mm, or 0.338 m/a. This is based on the subtraction of actual evapotranspiration from the total precipitation.

Step 2: Open Cell

During active landfilling of a cell, it is assumed that the entire available surplus will infiltrate.

Therefore, the average rate of leachate production, per hectare, in an open cell can be calculated.

Step 3: Closed Cell

=

Once a cell is closed it will be capped with 0.85 m of compacted clay, plus 0.15 m of vegetated topsoil. In a weathered condition it is assumed that the cap will turn about 33% of the water surplus aside. (Experience shows that this figure can vary locally from 0 to 40%) Hence 67% of the surplus will infiltrate, and therefore leachate production may be calculated as:

 $0.67 \times 3,380 = 2,250 \text{ m}^3/\text{a/ha}$ or 0.071 L/s/ha

Step 4: Estimated Average Leachate Production After Closure

Based on a 59.06 ha landfill footprint, the average annual leachate production after closure (covered) is:

2,250 $m^3/a/ha \ge 54.2 ha$ = 121,950 m^3/a or 4.21 L/s

Step 5: Effect of Annual Fluctuations

The water budget states that, in 13 out of 20 years the annual surplus is likely to range from 0.268 m to 0.414 m. By factoring this range to the average annual surplus of 0.338 m, a range in leachate production is calculated.

 $Q_{MIN} = \frac{.268}{.338} \times 4.21 \text{ L/s} = 3.3 \text{ L/s}$ $Q_{MAX} = \frac{.414}{.338} \times 4.21 \text{ L/s} = 5.2 \text{ L/s}$

Therefore, it can be expected that leachate production will range between 3.0 and 4.7 L/s after landfill closure.

, . Appendix F

Contaminating Lifespan Calculations

Table F1: Calculated Contaminating Lifespan in The Proposed East Quarry Landfill Method 1: Leachate concentration decays over time (Rowe, 1991)

	ELEMENTS	So	dium	Flue	oride
Data from bulk analysis March 1	994 - kg	mg/kg	mass of compound (mg)	mg/kg	mass of compound (mg)
Assessed Mixed Waste	4 200 000 000	2510	1.05E+13	14	5.88E+10
Oxides other	2,200,000,000 200,000,000	1338	2.94E + 12	9	1.98E+10
Industrial sands/dust/ashes	400,000,000				
Contaminated Soils	2,900,000,000	892	2.59E+12	5.5	1.60E+10
Misc Industrial Wastes	100,000,000				
Total	10,000,000,000				
Total mass of element in Landfil (% of total waste mass)	l (mg)	mg	1.61E+13 0.16%	mg	9.46E+10 0.0009%

(uses average bulk analysis concentration in each waste type)

	Sodium (mg/L)	Fluoride (mg/L)
(1) Highest predicted East Quarry Landfill leachate concentration	739	3.9
(2) Average predicted East Quarry Landfill leachate concentration	629	2.4
(3) Highest observed concentration in the West Quarry leachate (mg/L) in areas with limited eluminum processing waste	552	3.9

Calculated Contaminating Lifespan Fluoride Sodium 0.9 145 Parameter concentration considered OOWO - h acceptable for discharge (mg/L) ODWO - a on RUP calculation (based on RUP calculation) Time required to decrease the leachate concentration to 268 levels considered acceptable for discharge to the 267 environment using the highest predicted East Quarry Landfill leachate concentration Time required to decrease the leachate concentration to 291 282 levels considered acceptable for discharge to the environment using the average predicted East Quarry Landfill leachate concentration Time required to decrease the leachate concentration to levels considered acceptable for discharge to the environment using the maximum leachate concentration in the West Quarry Landfill (mg/L) in 268 293 areas with limited aluminum processing waste

 $\mathbf{t} = -\mathbf{M} \ln \left(\mathbf{C}_{\mathrm{L}} / \mathbf{C}_{\mathrm{O}}\right) / \mathbf{q} \mathbf{A} \mathbf{C}_{\mathrm{O}}$

t = time at which the leachate concentrations have decreased enough to allow discharge to the environment .

C_O = Maximum Leachate Concentration A = Landfill area (59.06 ha)

C L = Leachate concentration required for discharge

q = Infiltration rate (0.225 m/a)

RUP - Reasonable Use Policy

for health parameters, RUP = background + .25 (ODWO - background) for aethetic parameters, RUP = background + .5 (ODWO - background)

M = Mass of contaminant

0.225 m/a Estimated leachate production rate in East Quarry Landfill with Final Cover Based on long term average surplus rainfall of 0.338 mm/a, and 66% infiltration through the cover

Table F2: Calculated Contaminating Lifespan of the Proposed East Quarry Landfill Calculation using mass balance model

	ELEMENTS		Sodium	F	luoride
Data from Bulk analysis March 1994 (uses average concentrations) Dofasco Waste	kg	mg/kg	mass of compound (mg)	mg/kg	mass of compound (mg)
Approved Mixed Waste	4,200,000,000	2510	1.05E+13	14	5.88E+10
Oxides other	2,200,000,000 200,000,000	1338	2.94E+12	9	1.98E+10
industrial sands/dust/ashes	400,000,000				
Contaminated Soils	2,900,000,000	892	2.59E+12	5.5	1.60E+10
Misc Industrial Wastes	100,000,000				
Total	10,000,000,000				
Total mass of element in Landfill (mg (% of total waste mass))	mg	1.61E+13 0.16%	mg	9.46E+10 0.00%

Predicted Mass of Critical Contamiants using Bulk Analysis Information

Predicted Leachate Concentrations

	Sodium (mg/L)	Fluoride
(1) Highest predicted concentration in the East Quarry Landfill leachate	739	3.9
(2) Average predicted concentration in the East Quarry Landfill leachate	629	2.4
(3) Highest Observed Concentration in the West Quarry Leachate (mg/L) in areas with limited aluminum processing waste	552	3.9

Predicted Contaminating Lifespan for Critical Contaminants Calculated from the Closure of the Proposed East Quarry Landifil

		(
	Sodium	Fluoride
The total volume of water needed to leach out compound, using the highest predicted East Quarry Landfill leachate concentration	(L) 2.17E+10	(L) 2.42E+10
Calculated time required to leach out the element with leachate generation rate of 3.87 L/s	years 164	years 182
The total volume of water needed to leach out compound, using the average predicted East Quarry Landfill leachate concentration	(L.) 2.56E+10	3.94E+10
Calculated time required to leach out the element with leachate generation rate of 3.87 L/s	years 192	years 297
The total volume of water needed to leach out compound, using the highest observed concentration in the West Quarry Leachate (mg/L) in areas with limited aluminum processing waste	(L) 2.91E+10	(L) 2.42E+10
Calculated time required to leach out the element with leachate generation rate of 3.87 L/s	years 219	years 182

Estimated leachate production rate in East Quarry Landfill with final cover (L/s) Based on long term average surplus rainfall of 0.338 mm/a, and a total area of 59.06 Ha

Based on long term average surplus rainfall of 0.338 mm/a, and a total area of 59.06 Ha Assumes 66% infiltration through the final cover 4.21 L/s

.

2012 Construction Inspection Report – Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System

Newalta Corporation

2012 Construction Inspection Report – Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System

Prepared by: AECOM 300 – 300 Town Centre Boulevard Markham, ON, Canada L3R 5Z6 905 477 1456 fax www.aecom.com

Project Number: 60265424

Date: July, 2013

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Consultant which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2012-01-06 © 2009-2012 AECOM Canada Ltd. All Rights Reserved.

AECOM 300 – 300 Town Centre Boulevard Markham, ON, Canada L3R 5Z6 www.aecom.com

905 477 8400 tel 905 477 1456 fax

July 31, 2013

Mr. Lorenzo Alfano Newalta Corporation 65 Green Mountain Road Stoney Creek, ON L8J 1X5

Dear Mr. Alfano:

Project No: 60265424

Regarding: 2012 Construction Inspection Report – Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System

We are pleased to provide you with our report documenting the quality assurance work undertaken in 2012 for the Stage 1 Stormwater Management System. We understand that this report will be used to satisfy Condition 14.1 and 14.3 of Environmental Compliance Approval No. A181008 issued by the Ministry of the Environment (MOE) for the site. We note that a letter dated May 2, 2013 was submitted to the MOE immediately upon completion of the Stormwater Management System.

Please do not hesitate to contact us with any questions or comments.

Sincerely, **AECOM Canada Ltd.**

Kang Jedec

Larry Fedec, P.Eng., M.BA. Manager, Waste Services, Environment *Larry.Fedec@aecom.com*

LMF:mm Encl.

Distribution

# of Hard Copies	PDF Required	Association / Company Name	
2	1	ewalta Corporation	
1	1	linistry of the Environment, Approval Branch	
1	1	inistry of the Environment, Hamilton District Office	
0	1	ackman Geoscience Inc.	
1	1	AECOM Canada Ltd.	

AECOM Signatures

Marco Koscorello

Report Prepared By:

Marco Coscarella E.I.T., Waste Services

mw

Report Prepared By:

Justin Munro Senior Environmental Technician

Rang Jacker

Report Reviewed By:

Larry Fedec, P.Eng., M.B.A. Manager, Waste Services

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal

page

1.	Intro	duction	1	1
	1.1	Backo	round	
	1.2	Scope	of Report	
2.	Cons	struction	n Activities	
	2.1	Overvi	iew	
	2.2	Key Co	ontractors	
	2.3	Materia	als	
	2.4	Constr	ruction Equipment	
3.	Con	struction	n Inspection and Testing	5
	3.1	Overvi	iew	
	3.2	Constr	ruction Materials Testing	
		3.2.1	Liner Soils	
		3.2.2	Engineered Fill	
		3.2.3	Granular 'A'	
		3.2.4	Rip-Rap	
		3.2.5	Clear Stone	
		3.2.6	Geotextiles	
		3.2.7	HDPE Pipes	
		3.2.8	Concrete Structures	7
	3.3	Constr	ruction Methods Inspection and Testing	
		3.3.1	General	
		3.3.2	Engineered Fill	7
		3.3.3	Clay Liner	
			3.3.3.1 Construction Method	
		3.3.4	Geotextile and Geoweb Installation	
		3.3.5	Piping Installation	
		3.3.6	Concrete Maintenance Holes	
		3.3.7	Perimeter Drainage Ditch	
	3.4	Conclu	usions	
4.	Refe	rences .		

List of Figures

- Figure 1. Stage 1 Stormwater Management System Plan
- Figure 2. Typical Cross Section of Perimeter Drainage Ditch
- Figure 3. Cross Section of Support Berm Connecting the Forebay to the Detention Pond
- Figure 4. Cross Section of Overflow Weir
- Figure 5. Cross Section Through Outlet Structure
- Figure 6. Stormwater Pond Plan
- Figure 7. Cross Section Through Culvert under West Site Entrance

List of Tables

Table 1.	Roles and Responsibilities of Key Contractor	3
Table 2.	Suppliers and Manufacturers of Key Construction Materials	4

Appendices

- Appendix A. Letters to Ministry of the Environment
- Appendix B. Construction Photographs
- Appendix C. Daily Activity Logs
- Appendix D. Laboratory Soils Test Results
- Appendix E. In situ Moisture Contents
- Appendix F. Field Testing Reports for the Forebay and Detention Pond (Clay)
- Appendix G. Field Testing Reports for the Forebay and Detention Pond (Engineered Fill)

1. Introduction

1.1 Background

Newalta Corporation operates the Newalta Stoney Creek Landfill (formerly the Taro Landfill) in Stoney Creek, Ontario. The site has been operating since December 1996 under Environmental Compliance Approval (ECA) No. A181008 issued by the Ministry of the Environment (MOE). Key conditions relating to the construction of the site's Stage 1 Stormwater Management System are the following:

• Condition 14.1:

"Specifications and a detailed quality assurance/quality control program for construction of the Major works, and provisions for quality assurance procedures, with respect to the liner, to be undertaken by an independent third-party consulting firm, reporting to the Ministry."

• Condition 14.3:

"The Company shall construct Major works in accordance with the approved final detailed design and shall implement the quality assurance procedures as approved by the Director."

> In 2012 Newalta undertook the construction of the Stage 1 Stormwater Management System which is shown in Figure 1. The main components of the Stage 1 Stormwater Management System include a perimeter drainage ditch along the west and south sides of the site which direct the stormwater into the forebay pond located at the northwest corner of the site. From the forebay pond the stormwater will flow through a 900 mm HDPE drainage pipe into the detention pond. Discharge from the detention pond is manually controlled by the outlet structure located at the northwest corner of the pond. The outlet structure consists of a 1,500 mm diameter concrete maintenance hole, fitted with a series 20-10c sluice gate. When the sluice gate is open, the stormwater will flow through a 750 mm drainage pipe to a 1,500 mm diameter concrete ditch inlet maintenance hole, and then into a culvert which runs under First Road West. This culvert discharges the stormwater into

the road side ditch. Newalta retained AECOM to carry out the associated construction quality assurance work. The completion and documentation of this work satisfies Conditions 14.1 and 14.3.

Construction generally took place between July 2012 and April 2013, with the following being completed:

a) a perimeter drainage ditch was constructed around the south and west perimeter of the landfill site. A typical cross section through the perimeter ditch is shown on Figure 2.

Braking and Hauling Rock from Forebay and Detention Pond Footprint

- b) a forebay pond was constructed on the north side of the west site entrance road along First Road West
- c) A support berm was constructed from the forebay pond to the detention pond to support a 900 mm HDPE drainage pipe. This pipe allows the stormwater from the forebay pond to flow into the detention pond. A cross section through the support berm is shown on Figure 3.
- d) the detention pond was constructed on the north side of the site along Green Mountain Road, east of the forebay pond
- e) an overflow weir was constructed on the west side of the detention pond in order to direct excess stormwater to flow into the site's existing pond. A cross section of the overflow weir can be seen on Figure 4.
- f) An outlet structure consisting of a 1,500 mm diameter concrete maintenance hole, fitted with a series 20-10c sluice gate, was constructed within the detention pond to allow manual control of the stormwater discharge from the site to the road side ditch. A cross section through the outlet structures are shown on Figure 5.

The major components mentioned above are presented on Figure 6.

There were three (3) design changes from the original Stage 1 Stormwater Management System design. These design changes are listed below:

- a) The footprint of the detention pond has been reduced in area, from the original design, in order to keep a setback of 30 m from the existing septic bed. This reduction in footprint area has resulted in an overall reduction in storage capacity of approximately 35%.
- b) The one (1) 1,050 mm HDPE culvert originally designed to run under the site entrance road from First Road West was changed to three (3) 675 mm concrete culverts. As bedrock is at the surface in this area, this modification was made to reduce the amount of bedrock removal and fill required to provide cover for the 1,050 mm pipe. A cross section through the culverts is shown on Figure 7.
- c) Location of the 1,500 mm diameter concrete ditch inlet maintenance hole, and alignment of the 750 mm HDPE pipe from the detention pond were modified to match the existing location of the culvert running under First Road West.

A letter pertaining to completion of the Stage 1 Stormwater Management System was submitted to the MOE on May 2, 2013. Submission of this report constitutes the remainder of the required quality assurance documentation. A copy of the letter to the MOE is provided in Appendix A.

1.2

Scope of Report

This report is being submitted to the MOE in compliance with Condition 14.1 and 14.3 of the ECA No. A181008 for the Newalta Stoney Creek Landfill. It documents construction activities undertaken in 2012 and early 2013, and the associated construction quality assurance program. Photographs showing typical construction activities are shown in Appendix B. Daily documented construction activities can be seen in Appendix C.

The remainder of this report is organized as follows:

- a) Section 2 presents a brief overview of the construction activities;
- b) Section 3 summarizes the results of:
 - conformance testing of the materials used;
 - inspections to confirm that construction methods were achieved;
 - evaluation of the performance of the compacted clay liner;
 - conclusions
- c) Sections 4 provides a list of references.

Results of the various field and laboratory testing carried out during the Stage 1 Stormwater Management System work are presented in Appendices D through G of this report.

2. Construction Activities

2.1 Overview

Dufferin Construction Company (Dufferin) was contracted to complete the construction of the stormwater pond and related structures. Terrafix Environmental Technology Inc. (Terrafix), was responsible for the supply of the geotextile and geoweb used during construction.

Construction commenced on June 26, 2012 and concluded on April 30, 2013. Work was typically carried out Monday to Friday, between the hours of 7:00 a.m. to 5:00 p.m. (except during or immediately after periods of inclement weather). Construction, testing and inspection work was extended into weekends periodically to take advantage of good weather conditions, with the approval of the District MOE office.

2.2 Key Contractors

The key contractor involved in the construction of the Stage 1 Stormwater Management System, as well as their various roles and responsibilities are outlined in Table 1.

 Table 1.
 Roles and Responsibilities of Key Contractor

Company	Role	Responsibilities
Dufferin Construction Company	General Contractor	Construction of all components

Materials

2.3

The main suppliers and manufacturers of materials involved in the construction of the Stage 1 Stormwater Management System are outlined in Table 2.

 Table 2.
 Suppliers and Manufacturers of Key Construction Materials

Material(s)	Supplier	Manufacturer(s)
Soil	Newalta Corporation	-
Granular	Newalta Corporation	Vinemount Quarries
Type 400-R Geotextile	Terrafix Geosynthetics Inc.	Propex Inc.
Terrafix Terraweb 200 mm	Terrafix Geosynthetics Inc.	Texel Inc.
HDPE BOSS 2000 Pipe	Sandale Utility Products	Oxford Plastics Inc.
HDPE DR35	Sandale Utility Products	Oxford Plastics Inc.

2.4 Construction Equipment

Major equipment employed during construction consisted of the following:

- a) Tracked Excavators (Caterpillar 330C, 345CL, 365C, 550LC, John Deere 230LC, 350D, 450D)
 - · excavation and loading of soils and granular pipe bedding
 - bedrock excavation within detention pond (when equipped with a hydraulic hoe-ram)
 - compaction of pipe bedding (equipped with hoe-pack)
 - excavation of perimeter drainage ditch and pipe trenches
 - transport and support of large, heavy construction materials (e.g., geotextile rolls, concrete maintenance structures and piping.
 - Loading stone into gabion baskets and placing rip-rap.

b) Caterpillar D6N, John Deere 750J Bulldozers

- Spreading and shaping soils for clay liner and engineered fill
- Spreading topsoil for the ponds
- fine grading of ponds and ditches

c) Volvo A35, A30D, John Deere 350D Rock Trucks

- haulage of clay soils and granular materials
- haulage of excavation spoil

d) Water Tank Trucks with Spray Hoses

- addition of water to clay soils or granular materials prior to compaction
- application of water to haul roads for dust control

e) Bomag BW213PDH-3, Caterpillar CP563D Pad Foot Compactors

• compaction of engineered fill and clay liner for ponds and support berm

f) Terex "Zoom-Boom" Telescopic Fork-Lift

• movement of geotextile rolls

Other minor equipment used included diesel pumps, hand-guided augers and plate tampers/jumping jacks and skid steer.

Construction of Gabion Walls within Detention Pond

3. Construction Inspection and Testing

3.1 Overview

The benchmark for the quality assurance program was the approved Design Drawings and Specifications. Minor modifications to the design and quality assurance protocols were occasionally made in the field in order to accommodate specific site conditions. All such changes are documented in this report.

AECOM staff was on site to carry out quality assurance inspection and field testing during construction of the Stage 1 Stormwater Management System. AECOM carried out inspection and testing for the clay liner and engineered fill used in the forebay and detention ponds support berm, as well as the perimeter drainage ditch, maintenance hole structures and drainage pipe installation. AECOM and Dufferin jointly carried out surveying to check proper alignment and grade control in addition to the Global Positioning Satellite (GPS) grading hardware utilized on select Dufferin earth moving equipment.

In addition to the testing and inspection discussed herein, AECOM also carried out routine contract administration duties, and recorded the contractor's activities in daily field inspection records.

3.2 Construction Materials Testing

3.2.1 Liner Soils

Soil used for the forebay and detention pond's clay liner construction was obtained from on-site stockpiles and quarry overburden strippings. Soil used in the construction was routinely tested for basic geotechnical properties

including standard proctor density and optimum moisture content, Atterberg limits, and grain size analysis. Soil testing results are provided in Appendix D to F.

3.2.2 Engineered Fill

Engineered fill was used for construction of the forebay and detention pond base and sidewalls. The engineered fill was obtained from material excavated out of the perimeter drainage ditch and on site stockpiles. Engineered fill used in construction was routinely tested for standard proctor density and optimum moisture content. Test results for the engineered fill are provided in Appendix D and G.

3.2.3 Granular 'A'

Granular 'A' was used for the foundation pad of the manhole structure within the detention pond, for pipe bedding, and for various other minor applications. Granular 'A' used in the construction of the Stage 1 Stormwater Management System was imported from Vinemount Quarries.

3.2.4 Rip-Rap

Rip-Rap was placed at each bend within the perimeter drainage ditch, at the inlets of the forebay and detention ponds and around the perimeter of the overflow weir to prevent erosion due to the stormwater flow. Rip-rap was also used to construct the gabion walls inside the forebay and detention pond. The rip rap used in the Stage 1 Stormwater Management System was obtained from a previously produced onsite stockpile.

3.2.5 Clear Stone

50 mm clear stone was used as infill for the geoweb at the overflow wire of the detention pond. Clear stone used in construction of the Stage 1 Stormwater Management System was obtained from on-site stockpiles of product imported from Vinemount Quarries.

3.2.6 Geotextiles

Type 400-R geotextile was placed beneath the rip-rap at the inlet of the forebay and detention pond to protect the clay liner. Geoweb cellular system was used to construct the overflow weir located on the east edge of the detention pond.

Deployment of Geoweb

3.2.7 HDPE Pipes

Approximately 85 m of 900 mm diameter BOSS 2000 HDPE piping was installed to convey stormwater from the forebay to the detention pond. The 900 mm HDPE piping was placed within a trench excavated in the support berm, and buried following completion.

Approximately 95 m of 750 mm diameter HDPE piping was installed from the outlet structure within the detention pond to the ditch inlet manhole located at the east side of First Road West. \therefore

3.2.8 Concrete Structures

A 1,500 mm diameter concrete maintenance hole outlet structure was installed within the detention pond. The maintenance hole is fitted with a series 20-10c sluice gate to allow manual control of stormwater being discharged off-site.

A second 1,500 mm concrete ditch inlet maintenance hole was installed to replace the existing catch basin structure located at the corner of First Road West and Green Mountain Road. The east inlet pipe is a 750 mm diameter HDPE drainage pipe which comes from the outlet structure in the detention pond. The west outlet pipe is a 760 mm diameter CSP culvert which runs underneath First Road West and discharges into the road side ditch.

3.3 Construction Methods Inspection and Testing

3.3.1 General

The benchmark for the construction methods inspection and testing program was the approved Stage 1 Stormwater Management System detailed Design Drawings and Specifications.

Prior to construction of the Stage 1 Stormwater Management System, the following site preparations were necessary:

- "brush" area within the footprint of the detention pond was removed prior to the start of construction.
- clearing of stored materials from the work area
- the topsoil was stripped from the footprint area of the forebay pond and detention pond
- any bedrock outcrops within the construction area were broken and removed
- heightening and relocation of the overhead power line within the work area.

3.3.2 Engineered Fill

Engineered fill was used to construct the base and sidewalls of the forebay and detention pond. Soil conditioning prior to compaction was carried out in

the forebay / detention pond construction area and included rock and debris removal, breaking up of soil clods, and moisture adjustment. Water was added as required using a tank truck equipped with a spray canon.

Inspection and testing during the engineered fill placement generally consisted of:

- a) visual inspection of on-site soil stockpiles of the materials for construction and conditioning operations;
- b) visual inspection of the finished subgrade prior to engineered fill placement;
- c) visual inspection of methods used during compaction of each lift;
- d) in situ density and moisture content measurements using a nuclear density gauge, readings were periodically verified/ corrected by oven moisture content analysis on soil samples collected from in situ test locations; and
- e) Visual inspection of effects of the compaction and hauling equipment on the lifts.

The inspection was undertaken by AECOM staff, and the results of the dry density and moisture content testing are presented in Appendix G. In this appendix each test carried out is numbered sequentially and the test location is identified. In many cases, a given area of the ponds is represented by several tests where the first shows inadequate compaction and subsequent tests confirm that the required density was achieved following additional compaction.

The compaction and moisture content specifications for the engineered fill soil requires that each lift be compacted to at least 95% of SPD with moisture content within 2% of optimum water content. Test results are summarized as follows:

- a) densities and moisture contents within the desired range were routinely achieved; and
- b) in isolated cases density or moisture content measurements outside of the desired range were accepted, based on the observed appearance and handling characteristics of the soil. This was done in cases where the measurement was made in an area where the soil was re-moulded, where it was known that an adequate number of compactor passes were made (based on the number of passes required to reach the required density in adjacent areas) and where the moisture condition was visually similar to surrounding areas. Such judgements were made on a case-by-case basis by the AECOM soils inspector.

3.3.3

Clay Liner

Inspection and testing during clay liner construction consisted of the following:

 a) visual inspection of on-site soil stockpiles of the materials for construction and conditioning operations;

Perimeter Ditch with Culverts under the East Site Entrance Road

- b) visual inspection of the finished subgrade prior to clay liner construction;
- c) visual inspection of methods used during compaction of each lift;
- d) in situ density and moisture content measurements using a nuclear density gauge, readings were periodically verified/ corrected by oven moisture content analysis on soil samples collected from in situ test locations;
- e) laboratory determinations of basic geotechnical properties and in situ moisture contents;
- f) laboratory and in situ hydraulic conductivity testing;
- g) visual inspection of action of the compaction and hauling equipment on the lifts,
- h) visual inspection of the finished surface of the clay liners;

The results of the *in situ* density and moisture content testing are presented in Appendix F. In this appendix each test carried out is numbered sequentially and the location identified (lift number, co-ordinates). In many cases, a given area of liner is represented by several tests, where the first test shows inadequate compaction and subsequent tests confirm that the required density was achieved following additional compaction. Probe holes created by the nuclear testing gauge were routinely filled with dry granular bentonite.

In situ moisture contents for the completed liner were determined by oven drying samples in the on-site laboratory and by nuclear gauge testing. Moisture contents obtained from oven drying averaged approximately 2% higher than the moisture contents obtained from nuclear gauge testing. This can likely be attributed to factors such as the position of the probe or the presence of foreign material below the surface (e.g., rocks) that can affect the accurate measurement of the *in situ* moisture content. In cases where the moisture contents obtained from the two methods differed by more than 2%, a moisture correction factor was applied to the nuclear gauge in order to correlate the field readings with those obtained from oven drying in the onsite laboratory. *In situ* moisture content results are provided in Appendix E.

HDPE Drainage Pipe Connecting the forebay pond to the detention pond

The compaction and moisture content specification for the clay liner requires that each lift of the liner be compacted to at least 98% of SPD with a moisture content within 1% to 3% wet of optimum moisture content. At the discretion of the Engineer, the Specifications allow the reduction of the required compaction density from 98% to 95% of SPD with a corresponding increase of the moisture content from 1% to 3% wet of the optimum moisture. The results of the *in situ* testing can generally be summarized as follows:

- a) densities and moisture contents within the desired range were routinely achieved; and
- b) in isolated cases density or moisture content measurements outside of the desired range were accepted based on the observed appearance and handling characteristics of the soil. This was done in cases where the measurement was made in an area where the soil was well re-moulded, where it was known that adequate compactor passes were made (based on the number of passes required to reach the required density in adjacent areas) and where the moisture condition was visually similar to surrounding areas where *in situ* measurements were within the range. Such judgments were made on a case-by-case basis by the AECOM soils inspector.

3.3.3.1 Construction Method

The first (i.e., lowest) lift of each clay liner was typically constructed with a lift thickness of approximately 250 mm. This thickness ensured that the underlying materials were not disturbed by the kneading action of the sheepsfoot compactor. The remaining lifts for each liner were typically constructed with an average compacted lift thickness of 200 mm. The clay liner in each the forebay and detention pond was constructed in three (3) lifts. The top lift of the clay liner was also typically overbuilt by about 50 mm and then cut down to the required grade and smooth rolled. This reduced productivity losses in the event of rainfall since only the 'overbuilt' surficial soils would typically be affected and could be rapidly removed.

Soil conditioning prior to compaction was carried out at the forebay / detention pond construction area and included rock removal, breaking up of soil clods, and moisture adjustment. Water was added as required using a tank truck equipped with a spray canon. Excessively wet soils were spread, broken up and allowed to air dry.

The removal of debris/rock from stockpiled soils was carried out routinely by Dufferin during the clay placement.

3.3.4 Geotextile and Geoweb Installation

Visual inspections were carried out during all aspects of geotextile and geoweb installation to ensure that:

a) the material was not damaged during handling or placement;

- b) material was covered with overlying rip-rap or 50 mm clean stone in a timely manner (e.g., within about four weeks) to prevent ultraviolet light damage to the fabric;
- c) when the geotextile was overlapped, a minimum 600 mm overlap was used.

The geotextile and geoweb products were generally placed by hand. Torn or punctured material was either patched with sufficient overlap to prevent separation or replaced. Geoweb was secured in place using manufacturer supplied pins, or 8 inch spikes. Geoweb was filled with 50 mm clear stone once a sufficient area was completed. In order to prevent wind damage to the geotextile, sand bags were placed along the edges immediately following deployment, until the overlying materials could be placed.

3.3.5 Piping Installation

Various pipe sizes of concrete, HDPE, and PVC were used during construction of the Stage 1 Stormwater Management System. Visual inspections were carried out during all aspects of piping installation to ensure that:

- a) materials were not damaged during handling or placement;
- b) granular bedding was placed and compacted according to specifications prior to installing piping
- c) elevations were verified to ensure proper inverts, flow and pipe alignment were achieved
- d) required gaskets, couplings and other components were installed according to manufactures specifications

3.3.6 Concrete Maintenance Holes

Two precast concrete maintenance holes were installed as part of the Stage 1 Stormwater Management System. Inspections were carried out during all aspects of installation to ensure that:

- a) materials were not damaged during handling or installation;
- b) granular bedding was placed to appropriate thickness and compacted prior to setting the manhole base;
- c) elevations were verified to ensure proper inverts, flow and pipe alignment were achieved;
- d) required gaskets and other components were installed according to manufactures specifications.

3.3.7 Perimeter Drainage Ditch

Approximately 1,300 m of perimeter ditch was excavated to collect stormwater runoff from the site and direct the flow to the forebay and

detention pond. Inspections were carried out during all aspects of ditch construction to ensure that:

- a) proper alignment and grades were being achieved;
- b) existing trees, cleanout structures, etc., were avoided where possible;
- c) elevations were verified to ensure proper inverts;
- d) geotextile and rip rap was placed as specified.

3.4 Conclusions

The following conclusions are drawn from the results of the quality assurance work undertaken during the 2012 Stage 1 Stormwater Management System:

- a) quality assurance work was carried out by AECOM during Stage 1 Stormwater Management System construction. The quality assurance protocols were in general conformance with those described in the approved specifications. Based on this work, it is concluded that the Stage 1 Stormwater Management System has been constructed in general conformance with the approved final detailed design;
- b) some modifications were made to the design of temporary works and quality assurance protocols to accommodate field conditions and material characteristics. We consider that these do not deviate from the intent of the design, and are not expected to have any effect on control system performance; and

4. References

Boutwell, G.P. and C.N. Tsai, 1992:

The Two-Stage Field Permeability Test for Clay Liners. Geotechnical News, Vol. 10, No. 2, pp. 32-34, June 1992.

Gartner Lee Limited, 1995:

Taro East Quarry Environmental Assessment, Design and Operations Report. January 1995. Gartner Lee 94-413.

Figures

2012 Construction Inspection Report-Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

STAGE 1 STORMWATER MANAGEMENT SYSTEM PLAN

AECOM

Figure: 01

Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

TYPICAL CROSS SECTION OF PERIMETER DRAIANGE DITCH AECOM

Figure: 02

Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

THE FOREBAY TO THE **DETENTION POND**

Figure: 03

Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

ANSI A 215.9mm x 279.4mm

Approved:

Checked:

CROSS SECTION OF THE OVERFLOW WEIR

431

-ast

AECOM Figure: 05

FINAL

CROSS SECTION THROUGH OUTLET STRUCTURE

2012 Construction Inspection Report-Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

STORMWATER POND PLAN

Figure: 06

DWG

AECOM Figure: 07

CROSS SECTION THROUGH THE CULVERT UNDER THE WEST SITE ENTRANCE

2012 Construction Inspection Report-Newalta Stoney Creek Landfill Site Stage 1 Stormwater Management System Project No.: 60265424 Date: July 2013

FINAL

Appendix A

Letters to Ministry of the Environment

905 477 8400 tel 905 477 1456 fax

May 2, 2013

Mr. Bill Bardswick Director, Hamilton Regional Office Ministry of the Environment 119 King Street West 12th Floor Hamilton, Ontario L8P 4Y7

Dear Mr. Bardswick:

Project No: 60265424

Regarding: Completion of Stage I Stormwater Management Facility, Newalta Landfill, Stoney Creek, Ontario (Industrial Sewage Works Environmental Compliance Approval No. 5400-7DSSHU)

Herein we provide our opinion that the construction of the stormwater management ponds and perimeter drainage ditches for the Stage I Stormwater Management Facility (SMF) at the Newalta Stoney Creek Landfill has been principally completed. The following is relevant:

- a) Construction of the forebay, detention pond, overflow weir, and drainage structures have all been completed in the northwest corner of the site.
- b) Perimeter drainage ditch construction has been completed over approximately 1,450 metres along the south and west sides of the landfill.
- c) Quality assurance inspection has been carried out by AECOM Canada Limited, including overall contract administration, general construction oversight, and soil compaction testing. Based on this inspection work, we are of the opinion that the SMF has been constructed in general accordance with the approved design and specifications.
- d) We understand that Newalta will commence operation of the SMF following implementation of the approved monitoring program and the submission of a *Stormwater Contingency and Remedial Action Plan.* Upon completion of these tasks, the SMF will be operated in a normally open position and uncontaminated stormwater will be discharged from the site to the roadside ditch outletting to Davis Creek.

Page 2 May 2, 2013

We will provide detailed documentation of the construction and quality assurance work upon its full completion. Should you have any questions, please do not hesitate to contact the undersigned, or Mr. Lorenzo Alfano of Newalta at (905) 548-5876.

Sincerely, **AECOM Canada Ltd.**

Brin Dunte

Brian Dermody, P. Eng. Environmental Engineer *brian.dermody@aecom.com* D: 905-477-8400 x384

BMD

cc: Mr. Lorenzo Alfano, Newalta Corporation Mr. Geoffrey Knapper, MOE District Manager

Appendix B

Construction Photographs

Photograph 1. Breaking and Removing Bedrock within Forebay and Detention Pond Footprint A

Photograph 2. Compacting Clay Liner within Forebay Pond

Photograph 3. Construction of Gabion Wall within Detention Pond

Photograph 4. Installation of Geoweb for the Overflow Weir 🛧

Newalta Corporation

Photograph 5. Construction of the HDPE Drainage Pipe from the Forebay to the Detention Pond

Photograph 6. Installation of Maintenance Hole at the Corner of Green Mountain Rd and First Rd

Photograph 7. Installation of Maintenance Hole with Detention Pond **↑**

Photograph 8. Construction of Perimeter Drain Ditch 🛧

Photograph 9. Culverts under the West Site Entrance A

Photograph 10. Detention Pond **↑**

Photograph 11. Forebay Pond A

Appendix C

Daily Activity Logs

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: June 27, 2012
Client:	Newalta Corporation	
Job Name:	Stormwater Management System / 7A	Cell
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Overcast/25°C/ cool breeze/afternoon	rain

<u>Detention/</u> <u>Forebay Pond</u>	 Stripped topsoil from the North limit of landfill within detention pond footprint. Constructed ramp to the north limit of the landfill for brush removal and clay excavation. Began excavating clay from the north limit of the landfill. Stock piled excavated clay on the east side of the detention pond footprint. Started layout for perimeter drainage ditch south of the west entrance. AECOM took clay sample from north limit of landfill (within detention pond footprint) – sample sent to Terraprobe
	footprint) – sample sent to Terraprobe.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: June 28, 2012
Client:	Newalta Corporation	
Job Name:	Stormwater Management System / 7A	Cell
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Sunny, warm (30°C), slight breeze	

Detention/	• Excavating clay from the north limit of the landfill.
Forebay Pond	 Stock plling excavated clay on the east side of detention point footprint. Started layout for forebay point construction
	 Removed top soil from the forebay pond footprint and stockpiled it outside
	of the footprint.
	 Excavated the forebay pond to correct base grade elevation.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	June 29, 2012
Client:	Newalta Corporation		
Job Name:	Stormwater Management System/ 7A	Cell	
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personne	: See attached sheet
Weather:	Sunny, Warm (30°C), slight breeze		

Detention /	٠	Started excavation of perimeter drainage ditch south of the west entrance.
Forebay Pond	٠	Engineered fill excavated from the drainage ditch is hauled to the forebay
		footprint for construction of the pond berm.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: _July 3, 2012
Client:	Newalta Corporation	
Job Name:	Stormwater Management System/ 7A	Cell
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Sunny / partial overcast, (28°C), sligh	breeze
prograss		

Detention /	٠	Excavation of the perimeter drainage ditch along First Rd.
Forebay Pond	٠	Continued hauling engineered fill excavated from the drainage ditch to the
		forebay footprint for construction of the pond berm.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: July 4, 2012		
Client:	Newalta Corporation		
Job Name:	East Landfill / Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny, 32°C		
			_

Detention /	•	Continued excavation of the perimeter drainage ditch along First Rd.
Forebay Pond	•	Construction of the forebay pond berm.
•	•	Site meeting AECOM, Dufferin, Newalta (2:30-3:30).

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 5, 2012
Client:	Newalta Corporation	
Job Name:	East Landfill / Phase 7A	
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Sunny, 35°C	

<u>Detention/</u> Forebay Pond	 Reviewed contractor GPS setup Excavating perimeter ditch south of First Rd entrance
<u>· • • • • • • • • • • • • • • • • • • •</u>	 Hauling, placing & compacting eng. fill to form forebay Starting to clear brush from detention pond area

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 6, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny, 36°C		

meter ditch south of First Rd entrance 9 & compacting eng. fill to form forebay from detention pond area	 Excavating perim Hauling, placing & Clearing brush from 	Detention/ Forebay Pond
meter ditch south of First Rd entrance 9 & compacting eng. fill to form forebay from detention pond area	 Excavating perim Hauling, placing & Clearing brush from 	Detention/ Forebay Pond

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date: July 9, 2012
Newalta Corporation	
East Landfill Phase 7A	
Dufferin Construction	
M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Sunny, 29°C	
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Sunny, 29°C

Detention /• Excavating perimeter ditch south of First Rd entranceForebay Pond• Hauling, placing & compacting eng. fill to form forebay

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 11, 2012
Client:	Newalta Corporation	
Job Name:	East Landfill Phase 7A	
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Sunny, 29°C	

Detention / •	Hauling, placing & compacting eng. fill to form forebay & preparing for
Forebay Pond	clay placement
•	Placing & compacting clay liner of forebay Excavating perimeter ditch south of First Rd entrance

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 12, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny, 30°C		

Detention /	٠	Placing & compacting clay liner of forebay, 2nd lift completed
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 13, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Overcast, Sunny breaks, 31°C		

Detention/	٠	Placing & compacting clay liner of forebay, completed by end of day
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 16, 2012
Client:	Newalta Corporation	
Job Name:	East Landfill Phase 7A	
Contractor:	Dufferin Construction	
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet
Weather:	Sunny, 30°C	
nrograss		

Detention/	•	Excavating channel for forebay
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: July 18, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny, 28°C		
nrograss			

Detention /	٠	Stripping & stockpiling topsoil from detention pond area
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: August 1, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny to partly cloudy,(30°C),		

progress:

<u>Detention/Forebay</u> • Construction Site Meeting #3 in pm <u>Pond</u>

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424 Date: August 8, 2012		August 8, 2012
Newalta Corporation		
Stormwater Management System/ 7A	Cell	
Dufferin Construction		
M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Overcast,(28°C), slight breeze		
	60265424 Newalta Corporation Stormwater Management System/ 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Overcast,(28°C), slight breeze	60265424 Date: Newalta Corporation

Detention/Forebay	٠	Started excavating engineered fill from detention pond footprint.
Pond	•	Excavated engineered fill was hauled to the east buffer zone to be used for backfill

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	August 9, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personne	: See attached sheet	
Weather:	Overcast, light rain in am, 25°C			

Detention /	Concrete culvert sections for perimeter drainage ditch delivered to site in
Forebay Pond	AM.
•	Continued excavating engineered fill from the detention pond footprint.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date: August 10, 2012	
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Overcast, light rain in am, 22°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Overcast, light rain in am, 22°C	60265424 Date: August 10, 2012 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker M. Coscarella/J. Munro/M. Stocker Personnel: See attached sheet Overcast, light rain in am, 22°C

Detention /	•	Clearing perimeter ditch @ First Rd entrance for culvert installation
Forebay Pond	•	Breaking rock @ detention pond

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	August 13, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personne	I: See attached sheet
Weather:	Sunny, 27°C		

Detention/	•	Completed concrete culvert installation @ First Rd entrance
Forebay Pond	•	Braking rock within the detention pond footprint and hauling to East buffer
		zone for backfill.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	September 13, 2012
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Sunny, 28°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Sunny, 28°C	60265424 Date: Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Munro, 28°C Personnel

Detention /	•	Hauling & placing/compacting clay PCL @ east end 7A
Forebay Pond	•	750 mm & 900 mm HDPE pipe delivered for Stormwater Management System.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	September 19, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Weather:	Sunny, 15°C		

Detention /	•	Construction Site Meeting #4 in pm
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	September 25, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Weather:	Sunny, 20°C		

Detention/ •	Excavating detention pond area
Forebay Pond •	8" perforated HDPE pipe delivered
•	Constructing berm between ponds

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: September 28, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Overcast, 16°C		

Detention /	٠	Placing & compacting eng. fill for detention pond
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 1, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personne	: See attached sheet
Weather:	Sunny, 20°C		
nr			

Detention/	٠	Placing & compacting eng. fill for detention pond & forebay
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 2, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Weather:	Overcast, 18°C		
nrogroce			

Detention/	٠	Placing & compacting eng. fill for detention pond & forebay
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 11, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Weather:	Sunny, 13°C		
nradrada			

Detention /	•	Excavating ditch south of forebay along First road
Forebay Pond	•	Started placing and compacting clay in detention pond

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	October 12, 2012
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
M. Coscarella/J. Munro/M. Stocker	Personne	: See attached sheet
Sunny, 8°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Sunny, 8°C	60265424 Date: Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Sunny, 8°C Personnel

Detention /	•	Excavating ditch south of forebay along First road
Forebay Pond	٠	Continued placing and compacting clay in detention pond

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 15, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet	
Weather:	PC /High of 10°C			

7A cell •	Continued placing	and compacting clay in detention pond
-----------	-------------------	---------------------------------------

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 16, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personne	: See attached sheet
Weather:	Sunny, 12°C		
nrograss			

Detention/	٠	Continued placing clay liner in detention pond
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	October 17, 2012
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
M. Coscarella/J. Munro/M. Stocker	Personnel	: See attached sheet
Overcast, rain, 10°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction M. Coscarella/J. Munro/M. Stocker Overcast, rain, 10°C	60265424 Date: Newalta Corporation

Detention /	٠	Placing & compacting clay in detention pond-completed by end of day
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: October 18, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	M. Coscarella/J. Munro/M. Stocker	Personnel: See attached sheet	
Weather:	Sunny, 18°C		

Detention /	•	Clearing connection 6C/7A
Forebay Pond	•	Grading Leachate collection blanket

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: October 22, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro / M. Coscarella	Personnel: See attached sheet	
Weather:	Sunny, 18°C		

Detention /	•	Excavating perimeter ditch south of forebay
Forebay Pond	•	Maintenance holes for the forebay and detention pond are delivered

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: October 24, 2012			
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel	: See attached sheet	
Weather:	Overcast, rain, 12°C			
progress:				

Importing and stockpiling granular 'A' for LCS Other work limited due to weather Construction Site Meeting #5 in pm
Construction Site Meeting #5 in pm

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	October 26, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, cloudy ,17°C			
nrograce				

Detention /	•	Placing & compacting clay in forebay channel
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: November 1, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel: See attached sheet	
Weather:	Overcast, rain, 7°C		

 Removed old Catch Basin at First Road West and Green replaced with new maintenance hole Connected outlet of new maintenance hole to existing Started excavating trench and installing 750 mm HDF basin, working east towards detention pond maintenance 	een Mountain and g culvert PE pipe from catch ance hole
---	--

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: November 2, 2012
Client:	Newalta Corporation	
Job Name:	East Landfill Phase 7A	
Contractor:	Dufferin Construction	
Inspected By:	J. Munro	Personnel: See attached sheet
Weather:	Overcast, showers, 7°C	

Detention /	•	Continue to excavate trench and install 750 mm HDPE pipe.
Forebay Pond	•	Gabion baskets delivered to site.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 5, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel	: See attached sheet	
Weather:	Overcast, 5°C			

Detention / Forebay Pond •	Continue to excavate trench and install 750 mm HDPE pipe. Installing detention pond Maintenance hole. Fine grading and proof rolling forebay. Orifice plate installed inside the maintenance hole within the detention pond.
----------------------------------	--

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 6, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Overcast, 6°C		

Detention/ Forebay Pond	Placing geotextile and rip rap at forebay channel. Fine grading and proof rolling remainder of forebay. Assembling gabion baskets.
•	Assembling gabion baskets.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 7, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Sunny, cloudy periods, 14°C		

<u>Detention/</u> Forebay Pond	Working on detention pond overflow weir.Placing and compacting clay base for over flow weir and in area for 300
	mm PVC pipe.Assembling gabion baskets.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: November 8, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel: See attached sheet	
Weather:	Sunny, 7°C		

Detention /	•	Assembling and installing gabion baskets in forebay.
Forebay Pond	•	Fine grading detention pond.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 9, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel	See attached sheet	
Weather:	Overcast, 12°C			

<u>Detention /</u> Forebay Pond	•	Completed gabion baskets within forebay. Completed rip rap placement in forebay. Assembling and installing gabion baskets in detention pond
	•	Assembling and installing gablon baskets in detention pond.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	November 12, 2012
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
J. Munro	Personnel:	See attached sheet
Sunny, rain in pm, windy 17°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction J. Munro Sunny, rain in pm, windy 17°C	60265424 Date: Newalta Corporation

<u>Detention /</u> Forebay Pond	•	Assembling and installing gabion baskets in detention pond. Fine grading and compacting over flow weir.
	•	Installing geoweb at over flow weir.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 13, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel	: See attached sheet
Weather:	Sunny, cloudy periods, 4°C		
nroaress.			

Detention/	•	Installing geoweb at overflow weir.
Forebay Pond	•	Assembling and installing gabion baskets in detention pond.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 14, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Sunny, cloudy periods, 6°C		

Detention/	•	Installing and filling geoweb at overflow weir.
Forebay Pond	٠	Assembling and installing gabion baskets in detention pond.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 15, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro / M. Coscarella	Personne	: See attached sheet
Weather:	Overcast, 8°C		

Detention / •	Installing and filling geoweb at overflow weir.
Forebay Pond •	Assembling and installing gabion baskets in detention pond.
•	Placing and grading topsoil on outside banks of forebay. Installing 300 mm PVC pipe in detention pond Maintenance hole

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: November 16, 2012	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel: See attached shee	t
Weather:	Sunny, 10°C		

Detention / Forebay Pond	Installing and filling geoweb at overflow weir. Assembling and installing gabion baskets in detention pond. Placing and grading topsoil on outside banks of forebay and detention pond.
-----------------------------	--

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

: 60265424 Date: Novembe		November 19, 2012	
Newalta Corporation			
East Landfill Phase 7A			
Dufferin Construction			
J. Munro	Personnel	: See attached sheet	
Overcast, foggy, 9°C			
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction J. Munro Overcast, foggy, 9°C	60265424 Date: Newalta Corporation	60265424Date: November 19, 2012Newalta CorporationEast Landfill Phase 7ADufferin ConstructionJ. MunroPersonnel: See attached sheetOvercast, foggy, 9°C

Detention / Forebay Pond	Placing and grading topsoil on outside banks of forebay and detention pond in am. Formed and poured concrete support pier for 300 mm PVC pipe at detention pond.
-----------------------------	---

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: November 20, 2012			
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Overcast, foggy, 10°C			

Detention/	٠	Placing and compacting clay around 300 mm PVC pipe at detention pond.
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 21, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel	: See attached sheet
Weather:	Overcast, foggy, 9°C		
prograss			
progress.			

Detention/	•	Completed constructing support berm between forebay and detention
Forebay Pond		pond.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	November 22, 2012
Newalta Corporation		
East Landfill Phase 7A		
Dufferin Construction		
J. Munro	Personnel:	See attached sheet
Sunny, 12°C		
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction J. Munro Sunny, 12°C	60265424 Date: Newalta Corporation

Detention /	•	Placed armour stone around MH in detention pond
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 26, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel	See attached sheet
Weather:	Sunny, cloudy periods, 3°C		
prograce			

Detention /	•	Excavating trench in support berm for 900 mm HDPE pipe between ponds
Forebay Pond	•	Installing 900 mm pipe in late pm

AECOM AECOM 300 – 300 Town Centre Boulevard 211 Gerada L 3R 5Z6 Markham, ON, Canada L3R 5Z6 www.aecom.com

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	November 30, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel	See attached sheet	
Weather:	Overcast, windy, 5°C			
Weather:	Overcast, windy, 5°C			

Detention/	900 mm HDPE pipe complete from forebay to detention pond
Forebay Pond	Compacting outside slopes of forebay and detention pond
•	Continue perimeter ditch excavation

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	December 6, 2012
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Sunny, 2°C		
progress:			

Detention /	•	Surveyed forebay & detention pond area.
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: December 11, 2012		
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Increated By:	L Munro	Personnel: See attached sheet	
inspected by.	0. Marie		
Weather:	Overcast, flurries, 0°C		
Weather:	Overcast, flurries, 0°C		

Detention/	٠	Sluice gate delivered for maintenance hole within detention pond.
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: December 12, 2012			
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, 3°C			
nrogroce				

Detention/	•	Installing orifice plate and sluice gate in detention pond Maintenance hole.
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: December 13, 2012			
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, 4°C			
progress:				
progress.				

Detention /	•	Installing sluice gate in detention pond maintenance hole
Forebay Pond	•	Continued with perimeter ditch excavation in pm.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424 Date: December 14, 2012		December 14, 2012	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, windy, 6°C			
nroaress.				

Detention /	٠	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 17,2013
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Sunny, windy, 6°C		
prograssi			

U y μ

Detention /	•	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 18,2013	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, windy, 6°C			
nrograce				

Detention /	Placing and grading topsoil on outside banks of forebay and detention
Forebay Pond	pond in am.
•	Continued with perimeter ditch excavation

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 19,2013
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Partial Cloudy, windy, 12°C		
nrograce			

Detention /	•	Placing and grading topsoil on outside banks of forebay and detention
Forebay Pond		pond in am.

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

60265424	Date:	April 22,2013	
Newalta Corporation			
East Landfill Phase 7A			
Dufferin Construction			
J. Munro	Personnel:	See attached sheet	
Sunny, 7°C			
	60265424 Newalta Corporation East Landfill Phase 7A Dufferin Construction J. Munro Sunny, 7°C	60265424 Date: Newalta Corporation East Landfill Phase 7A Dufferin Construction J. Munro Personnel: Sunny, 7°C	60265424 Date: April 22,2013 Newalta Corporation East Landfill Phase 7A Dufferin Construction

Detention /	Placing and grading topsoil on outside banks of forebay and detention
Forebay Pond	pond in am.
•	Continued with perimeter ditch excavation

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: April 23,2013	
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel: See attached sheet	
Weather:	Sunny, windy, 6°C		
progress:			

progress.

Detention /	٠	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 24,2013	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Sunny, 8°C			
progress:				

Detention /	•	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 25,2013
Client:	Newalta Corporation		
Job Name:	East Landfill Phase 7A		
Contractor:	Dufferin Construction		
Inspected By:	J. Munro	Personnel:	See attached sheet
Weather:	Overcast, windy, 11°C		
nroarace			

Detention /	•	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date: April 26,2013
Client:	Newalta Corporation	
Job Name:	East Landfill Phase 7A	
Contractor:	Dufferin Construction	
Inspected By:	J. Munro	Personnel: See attached sheet
Weather:	Overcast, windy, 14°C	
nrograce		

Detention /	٠	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 29,2013	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel:	See attached sheet	
Weather:	Overcast, 12°C			
progress:				

Detention /	•	Continued with perimeter ditch excavation
Forebay Pond		

905 477 8400 tel 905 477 1456 fax

Field Inspection Record

Job Number:	60265424	Date:	April 30,2013	
Client:	Newalta Corporation			
Job Name:	East Landfill Phase 7A			
Contractor:	Dufferin Construction			
Inspected By:	J. Munro	Personnel	: See attached sheet	
Weather:	Sunny, windy, 15°C			
progress:				

Detention /• Completed stormwater management system.Forebay Pond• Approved for discharge of stormwater to road side ditch.