

Appendix D

Laboratory Soils Test Results

May 25, 2012

Ref: 8-10-5013 Stoney Creek Office

AECOM

300 - 300 Town Centre Boulevard Markham, ON L3R 5Z6

Attention:

Mr. Brian Dermody

RE:

LABORATORY TEST RESULTS

NEWALTA LANDFILL STONEY CREEK, ONTARIO

Dear Sir,

This report presents the results of laboratory testing carried out on two samples of material delivered to our laboratory by a representative of your office on May 18th, 2012 and entered into our log on May 18th, 2012. As per your instructions, the testing was to consist of a hydrometer analysis, Atterburg Limits and standard Proctor compaction testing.

The samples received were labeled by your office as follows:

N12-CL-001 N12-CL-002

The attached table (Table 1) provides a summary of the test results.

We trust that this letter and the enclosed are satisfactory for your present requirements. If there is any point requiring further clarification, please contact this office.

Yours Truly,

Terraprobe Inc.

Adam Cummings C. Tech Technical Services Co-ordinator

TABLE 1 SUMMARY OF LABORATORY TESTING

Terraprobe SAMPLE ID	S656	S657
AECOM SAMPLE ID	N12-CL-001	N12-CL-002
Plastic Limit (%)	18.5%	18.9%
Liquid Limit (%)	34.0%	34.7%
Plasticity Index	15.5%	15.8%
Maximum Dry Density	1.785 T/m³	1.780 T/m³
Optimum Moisture Content	18.2%	18.5%

* Table to be read with accompanying letter. All percent values rounded to 0.1%.

Terraprobe

SIEVE AND HYDROMETER ANALYSIS

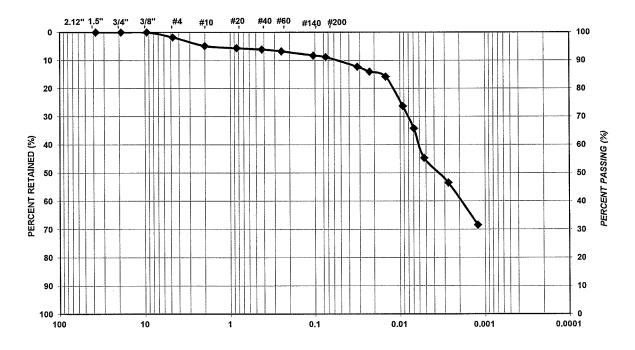
PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM BOREHOLE: N/A

SAMPLE NUMBER: Offsite (N12-CL-001)

SAMPLE DESCRIPTION: Silty Clay, trace sand, trace gravel

FILE NO.: **72-10-5013** LAB NO.: **S656**


SAMPLE DATE: May 18, 2012

SAMPLED BY: Client PLASTIC LIMIT: 18.5%

LIQUID LIMIT: 34.0% PLASTICITY INDEX: 15.5%

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

GRAIN SIZE (mm)

міт	COARSE	MEDIUM	FINE	COARSE	MEDIUM	FINE		
SYSTEM		GRAVEL			SAND		SILT	CLAY

ATTERBURG LIMIT **TEST FORM**

PROJECT : Newalta Landfill

FILE No.:

72-10-5013

LOCATION: Stoney Creek, ON

LAB No.:

S656

CLIENT

: AECOM

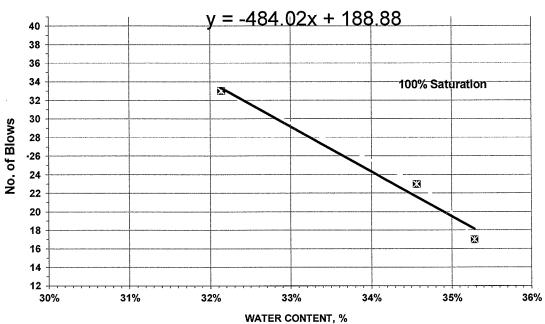
SAMPLE DESCRIPTION :

Silty Clay - Offsite (N12-CL-001)

SAMPLE DATE: May 18, 2012

SAMPLE LOCATION

SAMPLED BY: Client


SAMPLE SUPPLIER

Liquid Limit: Plastic Limit: 34.00 18.52

Platicity Index

15.48

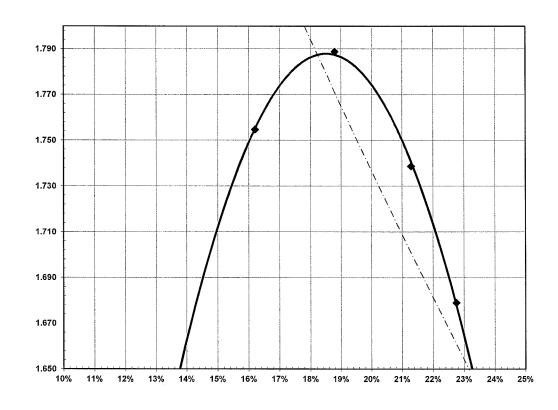
STANDARD ATTERBURG GRAPH

PROCTOR COMPACTION

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON CLIENT: AECOM

SAMPLE DESCRIPTION: Silty Clay, trace sand, trace gravel SAMPLE LOCATION: Offsite (N12-CL-001)

SAMPLE SUPPLIER: Offsite


FILE No.: 72-10-5013 LAB No.: S656
SAMPLE DATE: May 18, 2012
SAMPLED BY: Client

18.2

MAXIMUM DRY DENSITY (t/m3): 1.785 CORRECTED DRY DENSITY (t/m3): 1.785

STANDARD PROCTOR COMPACTION

OPTIMUM WATER CONTENT (%):

WATER CONTENT (%)

DRY DENSITY (T/cu.m.)

Terraprobe

SIEVE AND HYDROMETER ANALYSIS

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

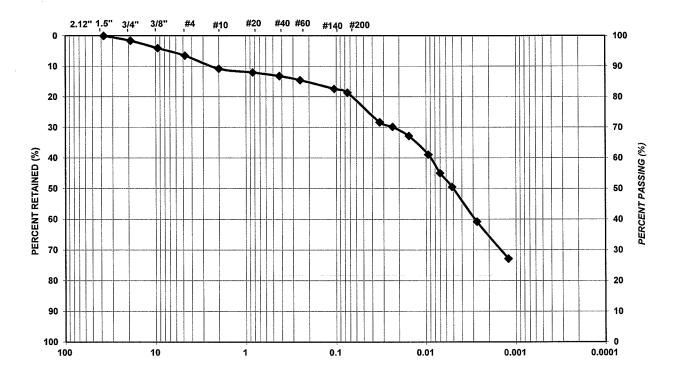
CLIENT: AECOM

BOREHOLE: N/A

SAMPLE NUMBER: Offsite (N12-CL-002)

SAMPLE DESCRIPTION: Silty Clay trace sand, trace gravel

FILE NO.: **72-10-5013** LAB NO.: **\$657**


SAMPLE DATE: **May 18, 2012**

SAMPLED BY: Client
PLASTIC LIMIT: 18.9%
LIQUID LIMIT: 34.7%

LIQUID LIMIT: 34.7% PLASTICITY INDEX: 15.8%

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

GRAIN SIZE (mm)

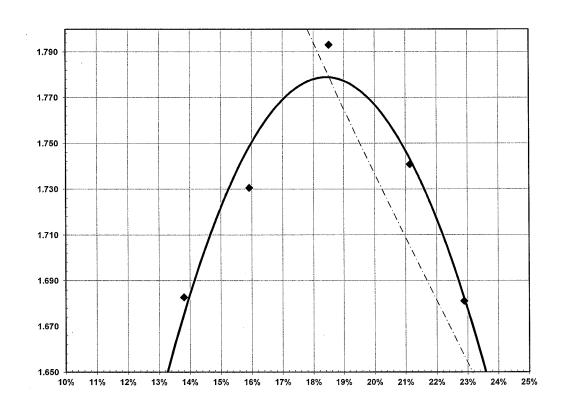
SYSTEM GRAVEL SAND SILT	CLAY

PROCTOR COMPACTION

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM
SAMPLE DESCRIPTION: Silty Clay, trace sand, trace gravel

SAMPLE LOCATION: Offsite (N12-CL-002)


SAMPLE SUPPLIER: Offsite

FILE No.: 72-10-5013 LAB No.: **S657** SAMPLE DATE: May 18, 2012 SAMPLED BY: Client

18.5

1.780 **MAXIMUM DRY DENSITY (t/m³):** 1.780 CORRECTED DRY DENSITY (t/m3): OPTIMUM WATER CONTENT (%):

STANDARD PROCTOR COMPACTION

WATER CONTENT (%)

DRY DENSITY (T/cu.m.)

ATTERBURG LIMIT **TEST FORM**

PROJECT: Newalta Landfill

FILE No.:

72-10-5013

LOCATION: Stoney Creek, ON

LAB No.:

S657

CLIENT

: AECOM

SAMPLE DESCRIPTION :

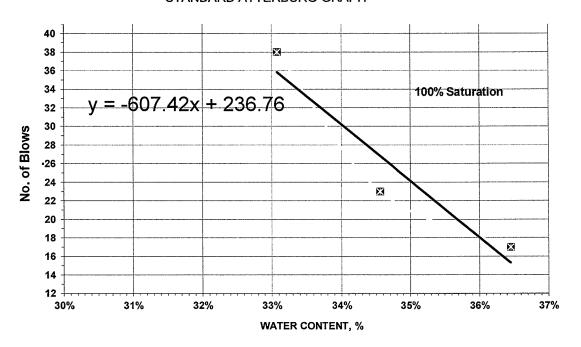
Silty Clay - Offsite (N12-CL-002)

SAMPLE DATE: May 18, 2012

SAMPLE LOCATION

SAMPLED BY: Client

SAMPLE SUPPLIER


Liquid	Limit:
Plastic	Limit:

34.70 18.90

Platicity Index

15.80

STANDARD ATTERBURG GRAPH

July 10, 2012

Ref: 72-10-5013 Formerly (8-10-5013) Stoney Creek Office

AECOM

300 - 300 Town Centre Boulevard Markham, ON L3R 5Z6

Attention:

Mr. Brian Dermody

RE:

LABORATORY TEST RESULTS

NEWALTA LANDFILL

STONEY CREEK, ONTARIO

Dear Sir,

This report presents the results of laboratory testing carried out a sample of material delivered to our laboratory by a representative of your office on June 27th, 2012 and entered into our log on June 27th, 2012. As per your instructions, the testing was to consist of a hydrometer analysis, Atterburg Limits, moisture content and standard Proctor compaction testing.

The samples received were labeled by your office as follows:

N12-CL-003

The attached table (Table 1) provides a summary of the test results.

We trust that this letter and the enclosed are satisfactory for your present requirements. If there is any point requiring further clarification, please contact this office.

Yours Truly,

Terraprobe Inc.

Adam Cummings, C.Tech Technical Services Co-ordinator

TABLE 1 SUMMARY OF LABORATORY TESTING

- Control of the Cont	
Terraprobe SAMPLE ID	S699
AECOM SAMPLE ID	N12-CL-003
As Received Moisture Content	23.0%
Plastic Limit (%)	14.0%
Liquid Limit (%)	35.0%
Plasticity Index	21.1%
Maximum Dry Density	1.735 T/m³
Optimum Moisture Content	17.5%

^{*} Table to be read with accompanying letter. All percent values rounded to 0.1%.

Terraprobe

SIEVE AND HYDROMETER ANALYSIS

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM

BOREHOLE: N/A

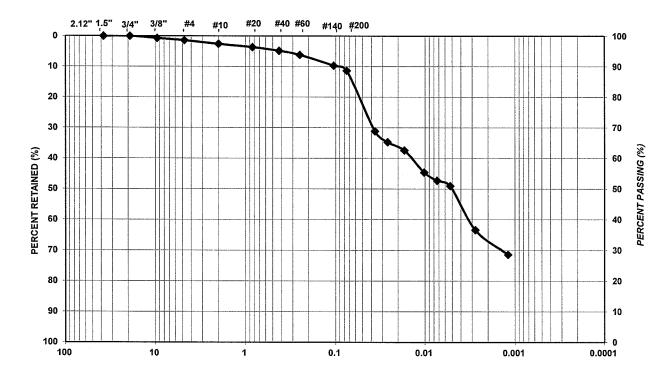
SAMPLE NUMBER: Offsite (N12-CL-003)

FILE NO.: **72-10-5013**

LAB NO.: **\$699**

SAMPLE DATE: June 27, 2012

SAMPLED BY: Client


PLASTIC LIMIT: 14.0%

SAMPLE DESCRIPTION: Brown Silty Clay, trace to some sand, occasional gravel LIQUID LIMIT: 35.0%

PLASTICITY INDEX: 21.1%

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

GRAIN SIZE (mm)

міт	COARSE	MEDIUM	FINE	COARSE	MEDIUM	FINE		
SYSTEM		GRAVEL			SAND		SILT	CLAY

ATTERBURG LIMIT **TEST FORM**

PROJECT: Newalta Landfill

FILE No .:

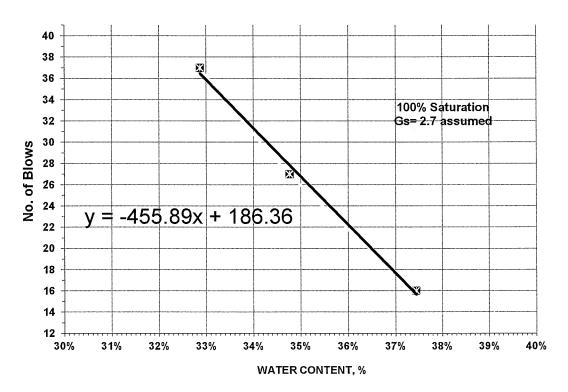
72-10-5013

LOCATION: Stoney Creek, ON

LAB No.:

S699

CLIENT


: AECOM

SAMPLE DESCRIPTION: Brown Silty Clay - Offsite (N12-CL-003 SAMPLE DATE: June 27, 2012

SAMPLED BY : Client

Liquid Limit:	35.03	
Plastic Limit:	13.97	
Platicity Inde	21.06	

STANDARD ATTERBURG GRAPH

DRY DENSITY (T/cu.m.)

PROCTOR COMPACTION

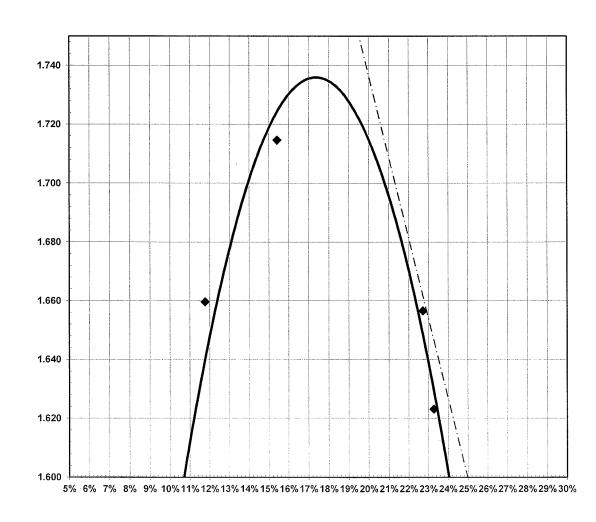
FILE No.: 72-10-5013

PROJECT: Newalta Landfill

LOCATION: Stoney Creek, ON LAB No.: S699
CLIENT: AECOM SAMPLE DATE: June 27, 2012

SAMPLE DESCRIPTION: Brown Silty Clay, trace to some sand, occasional graveSAMPLED BY: Client

SAMPLE LOCATION: (N12-CL-003) Detention Pond Area


SAMPLE SUPPLIER:

MAXIMUM DRY DENSITY (t/m³): 1.735

CORRECTED DRY DENSITY (t/m³): 1.735

OPTIMUM WATER CONTENT (%): 17.5

STANDARD PROCTOR COMPACTION

August 1, 2012

Ref: 72-10-5013 Formerly (8-10-5013)

Stoney Creek Office

AECOM

300 - 300 Town Centre Boulevard Markham, ON L3R 5Z6

Attention:

Mr. Brian Dermody

RE:

LABORATORY TEST RESULTS

NEWALTA LANDFILL

STONEY CREEK, ONTARIO

Dear Sir,

This report presents the results of laboratory testing carried out on a sample of material delivered to our laboratory by a representative of your office on July 24th, 2012 and entered into our log on July 24th, 2012. As per your instructions, the testing was to consist of a hydrometer analysis, Atterburg Limits, moisture content and standard Proctor compaction testing.

The sample received was labeled by your office as follows:

N12-CL-006 - East Borrow

The attached table (Table 1) provides a summary of the test results.

We trust that this letter and the enclosed are satisfactory for your present requirements. If there is any point requiring further clarification, please contact this office.

Yours Truly,

Terraprobe Inc.

Adam Cummings, C.Tech

Technical Services Co-ordinator

www.terraprobe.ca

TABLE 1 SUMMARY OF LABORATORY TESTING

Terraprobe SAMPLE ID	S714
AECOM SAMPLE ID	N12-CL-006
As Received Moisture Content	28.4%
Plastic Limit (%)	17.3%
Liquid Limit (%)	41.2%
Plasticity Index	23.9%
Maximum Dry Density	1.675T/m³
Optimum Moisture Content	20.0%
70 V O T T 1 1 1 1 1 1 1 1	

* Table to be read with accompanying letter. All percent values rounded to 0.1%.

ATTERBURG LIMIT **TEST FORM**

PROJECT : Newalta Landfill

FILE No.:

72-10-5013

LOCATION: Stoney Creek, ON

LAB No.:

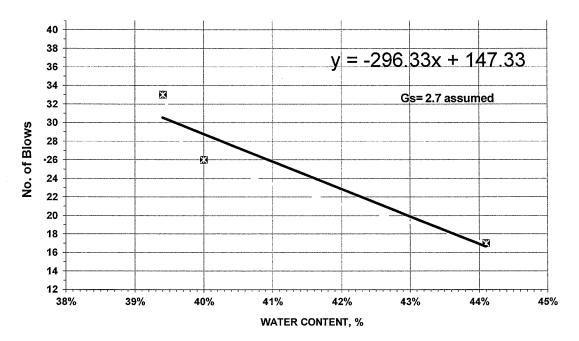
S714

CLIENT

: AECOM

SAMPLE DESCRIPTION :

Brown Silty Clay - (N12-CL-006)


SAMPLE DATE: July 24, 2012

East Borrow

SAMPLED BY: Client

Liquid Limit: Plastic Limit: 41.17 17.25 Platicity Index 23.92

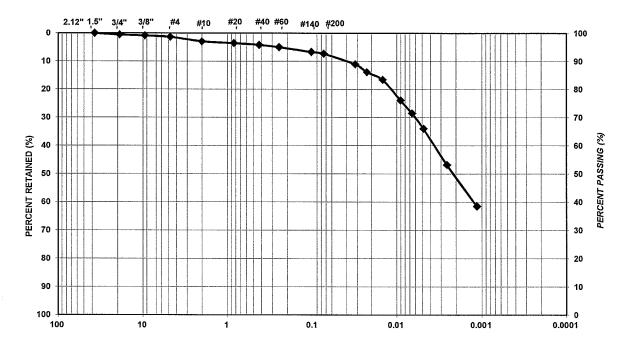
STANDARD ATTERBURG GRAPH

Terraprobe

SIEVE AND HYDROMETER ANALYSIS

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM BOREHOLE: N/A


SAMPLE NUMBER: (N12-CL-006) East Borrow SAMPLE DESCRIPTION: Brown Silty Clay, trace sand

FILE NO.: **72-10-5013** LAB NO.: **S714** SAMPLE DATE: **July 24, 2012**

SAMPLED BY: Client
PLASTIC LIMIT: 17.3%
LIQUID LIMIT: 41.2%
PLASTICITY INDEX: 23.9%

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

GRAIN SIZE (mm)

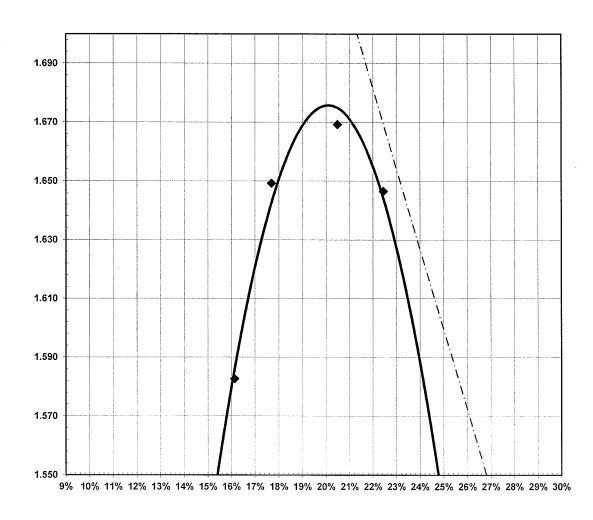
MIT	COARSE	MEDIUM	FINE	COARSE	MEDIUM	FINE		
SYSTEM	01/07=1/				SAND		SILT	CLAY

PROCTOR COMPACTION

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM

SAMPLE DESCRIPTION: Brown Silty Clay, trace sand SAMPLE LOCATION: (N12-CL-006) East Borrow


SAMPLE SUPPLIER:

FILE No.: **72-10-5013** LAB No.: **S714**

SAMPLE DATE: July 24, 2012 SAMPLED BY: Client

MAXIMUM DRY DENSITY (t/m³): 1.675
CORRECTED DRY DENSITY (t/m³): 1.675
OPTIMUM WATER CONTENT (%): 20.0

STANDARD PROCTOR COMPACTION

September 24, 2012

Ref: 72-10-5013 Stoney Creek Office

AECOM

300 - 300 Town Centre Boulevard Markham, ON L3R 5Z6

Attention:

Mr. Brian Dermody

RE:

LABORATORY TEST RESULTS

NEWALTA LANDFILL

STONEY CREEK, ONTARIO

Dear Sir,

This report presents the results of laboratory testing carried out on two samples delivered to our laboratory by a representative of your office on September 18th, 2012. As per your instructions, the testing was to consist of a sieve gradation analysis on a granular sample and a standard Proctor test, moisture content, and sieve hydrometer analysis on a soil sample. The samples received were labeled by your office as follows:

N12-LC-002 - Cayuga - 19mm Clear Stone N12-EF-001 - North Buffer - Engineered Fill

The attached table (Table 1) provides a summary of the test results for N12-EF-001 (S759). The sieve hydrometer for (S759) and sieve gradation analysis (S760) is also attached.

We trust that this letter and the enclosed are satisfactory for your present requirements. If there is any point requiring further clarification, please contact this office.

Yours Truly,

Terraprobe Inc.

Adam Cummings, C.Tech

Technical Services Coordinator

Terraprobe Inc.

www.terraprobe.ca

TABLE 1 SUMMARY OF LABORATORY TESTING

Terraprobe SAMPLE ID	S759
AECOM SAMPLE ID	N12-EF-001 - North Buffer - Engineered Fill
As Received Moisture Content	14.4%
Maximum Dry Density	1.925T/m³
Optimum Moisture Content	14.0%

^{*} Table to be read with accompanying letter.

PROCTOR COMPACTION

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

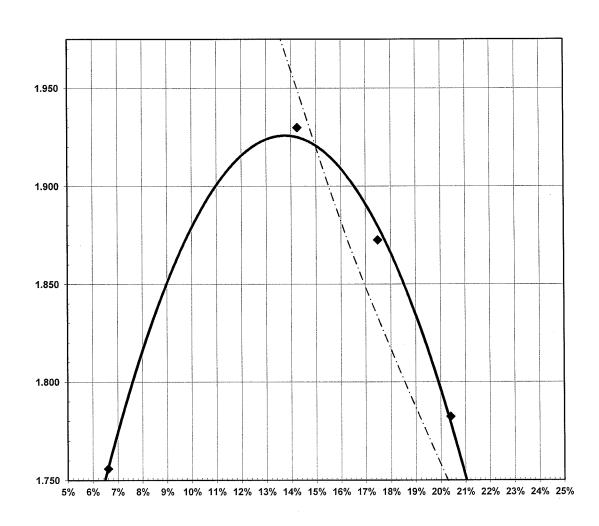
CLIENT: AECOM

SAMPLE DESCRIPTION: Brown Clayey Silt with sand and gravel

SAMPLE LOCATION: North Buffer - Engineered Fill (N12-EF-001)

SAMPLE SUPPLIER: N/A

FILE No.: **72-10-5013**


LAB No.: **S759**

SAMPLE DATE: September 18, 2012

SAMPLED BY: Client

MAXIMUM DRY DENSITY (t/m³):	1.925
CORRECTED DRY DENSITY (t/m3):	1.925
OPTIMUM WATER CONTENT (%):	14.0

STANDARD PROCTOR COMPACTION

Terraprobe

SIEVE AND HYDROMETER ANALYSIS

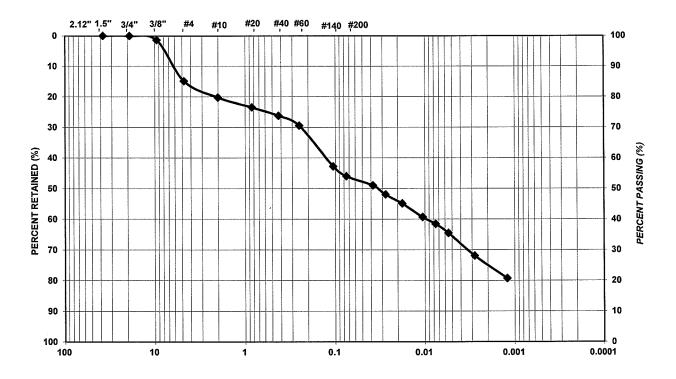
PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM

BOREHOLE: N/A

SAMPLE NUMBER: (N12-EF-001) North Buffer - Engineered Fill SAMPLE DESCRIPTION: Brown Clayey Silt with sand and gravel

FILE NO.: **72-10-5013**


LAB NO.: **\$759**

SAMPLE DATE: September 18, 2012

SAMPLED BY: Client

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES

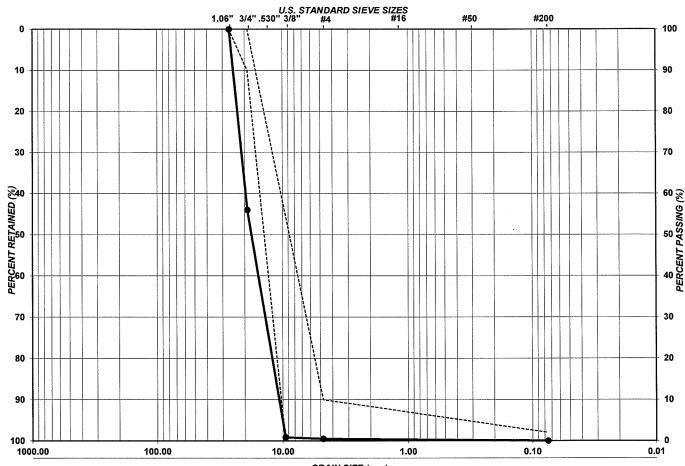
GRAIN SIZE (mm)

MIT	COARSE MEDIUM	FINE	COARSE	MEDIUM	FINE		
SYSTEM	GRAVEL	•		SAND		SILT	CLAY

SIEVE GRADATION ANALYSIS **TEST REPORT**

PROJECT: Newalta
LOCATION: Stoney Creek, Ontario
CLIENT: AECOM
WATERIAL DESCRIPTION: Cayuga 19mm Clear Stone - N12-LC-002

SAMPLE LOCATION: N/A SAMPLE SUPPLIER: N/A


No. 200

0.075

0

FILE NO.: **72-10-5013**LAB NO.: **S760**SAMPLE DATE: **September 18, 2012**SAMPLED BY: **Client**

GRAIN SIZE DISTRIBUTION

GRAIN SIZE (mm)

Note: Shading denotes not meeting specifications

MIT SYSTEM	GRAVEL						COARSE MEDIUM FINE SAND			SILT
UNIFIED SYSTEM	COARSE GRAVEL				FINE	COARSE	MEDIUM SA	ND I	FINE	
	SIEVE	SIZE		CENT PAS	SSING SAMPLE		CLEARS	TONE		
Stand	dard	(mm)	MIN.	MAX.	O/ ((V))	- 0, 00	, 1001			
	6"	26.5	100	100	100.0					
3/4		19.0	90	100	56.0					
3/8	8"	9.5	0	55	0.8					
No.	. 4	4.75	0	10	0.5					

0.0

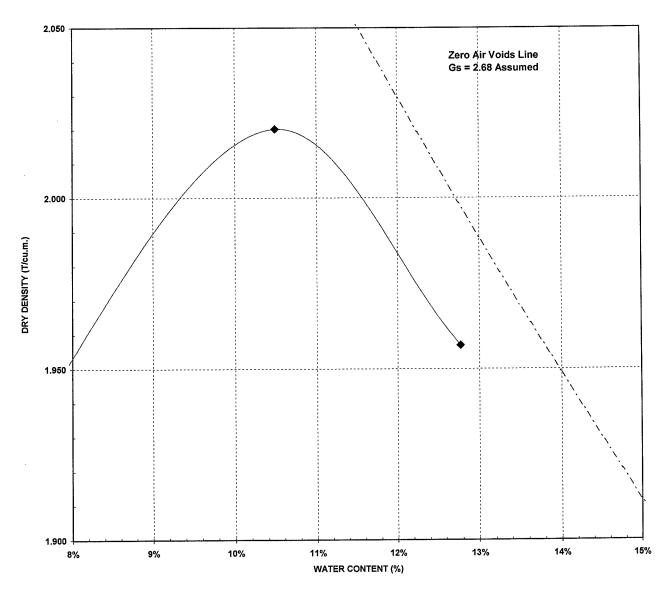
Terraprobe

PROCTOR COMPACTION TEST REPORT

PROJECT: Newalta Landfill

LOCATION: Hamilton

CLIENT: Gartner Lee Ltd.


SAMPLE DESCRIPTION: Sandy Silt SAMPLE LOCATION: Stockpile Sa2

SAMPLE SUPPLIER:

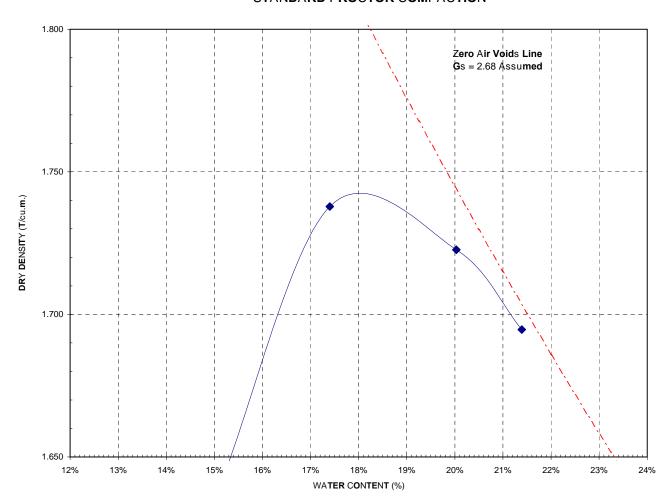
FILE No.: 8-07-2022 LAB No.: 072051 SAMPLE DATE: May 17 2007 SAMPLED BY: Client

MAXIMUM DRY DENSITY (t/m³): 2.020
OPTIMUM WATER CONTENT (%): 10.5

STANDARD PROCTOR COMPACTION

In Situ Water Content = 11.1%

PROCTOR COMPACTION TEST REPORT


FILE No.: 8-06-1007 LAB No.: 62002 SAMPLE DATE: **Mar** 31 2006 SAMPLED BY: C**lient**

PROJECT: Taro Landfill
LOCATION: N1001 - E1766
CLIENT: Gartner Lee
SAMPLE DESCRIPTION: Engineered Fill Sa # 1

SAMPLE SUPPLIER: On Site

MAXIMUM DRY DENSITY (t/m³):	1.745
OPTIMUM WATER CONTENT (%):	18.1

STANDARD PROCTOR COMPACTION

June 18, 2010

Ref: 8-10-5013 Stoney Creek Office

AECOM

300 - 300 Town Centre Boulevard Markham, ON L3R 5Z6

Attention:

Mr. Brian Dermody

RE:

LABORATORY TEST RESULTS

NEWALTA LANDFILL

STONEY CREEK, ONTARIO

Dear Sir,

This report presents the results of laboratory testing carried out on a sample of material delivered to our laboratory by a representative of your office on June 8, 2010. As per your instructions, the testing was to consist of a hydrometer analysis, Atterburg Limits, and standard Proctor compaction testing of the sample. The sample received was labelled by your office as follows:

Newalta, Phase 5B, Sample #3 Clay, Highway 20 South Borrow.

The attached table (Table 1) provides a summary of the test results. The hydrometer analysis is also attached.

We trust that this letter and the enclosed are satisfactory for your present requirements. If there is any point requiring further clarification, please contact this office.

Yours Truly,

Terraprobe Inc.

T. Kyle MacDonald, B.Sc.

Technical Services Coordinator

TABLE 1 SUMMARY OF LABORATORY TESTING

Terraprobe SAMPLE ID	S062
AECOM SAMPLE ID	Phase 5, Sample #3, Clay, Hwy. 20 South Borrow
Terraprobe Sample Description	Brown Silty CLAY, trace sand
Plastic Limit (%)	19.8
Liquid Limit (%)	42.4
Plasticity Index	22.6
Maximum Dry Density	1.658 T/m³
Optimum Moisture Content	22.5%

^{*} Table to be read with accompanying letter.

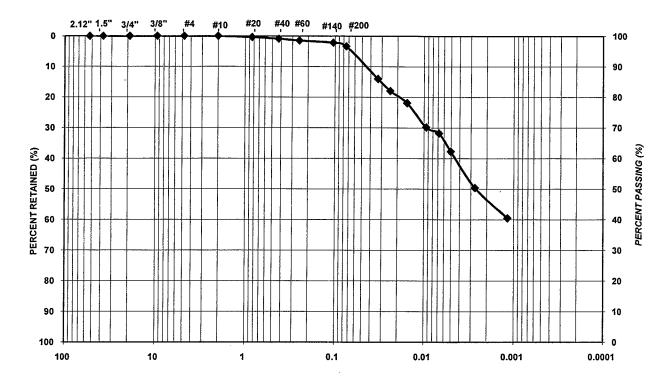
SIEVE AND HYDROMETER ANALYSIS

PROJECT: Newalta Landfill LOCATION: Stoney Creek, ON

CLIENT: AECOM

BOREHOLE: n/a SAMPLE NUMBER: n/a SAMPLE DEPTH: n/a

SAMPLE DESCRIPTION: Brown Silty CLAY, trace sand

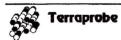

FILE NO.: 8-10-5013 LAB NO.: \$062

SAMPLE DATE: June 8, 2010

SAMPLED BY: Client

GRAIN SIZE DISTRIBUTION

U.S. STANDARD SIEVE SIZES


GRAIN SIZE (mm)

MIT	COARSE MEDIUM FINE		COARSE MEDIUM FINE		FINE			
SYSTEM		GRAVEL			SAND		SILT	CLAY

TABLE 1
SUMMARY OF LABORATORY TESTING

Terraprobe SAMPLE ID	S027	S028	S029	S030	S031
AECOM SAMPLE ID	Granular A limestone	Berm Stockpile South, Sample #2	Berm Stockpile North, Sample #1	Engineered Fill Stockpile, East	Engineered Fill Stockpile, West
Terraprobe Sample Description	Grey 26.5mm down crushed limestone, trace clay	Brown Silty CLAY with Grey SILT, trace sand, trace gravel	Brown Silty CLAY, trace gravel, trace topsoil	Brown Silty SAND, some gravel	Brown Silty SAND, some topsoil, trace to some gravel
SIEVE SIZE					
150mm	100.0	100.0	100.0	100.0	100.0
26.5mm	100.0			96.2	94.5
19.0mm	84.8	99.6	93.4	90.7	93.2
13.2mm	64.3			85.5	91.1
9.5mm	49.3	98.2	92.9	79.9	89.8
4.75mm	32.6	96.1	92.3	70.8	84.6
1.18mm	17.1			58.5	79.6
0.300mm	11.7			49.6	69.1
0.075mm	9.0	87.4	85.8	36.2	36.3
Plastic Limit	- Spirit Septembri	15.0%	18.6%		
Liquid Limit		29.3%	35.1%		
Plasticity Index		14.3	16.5		
Maximum Dry Density	2.120 T/m ³	1.765 T/m³	1.725 T/m³	2.008 T/m³	1.968 T/m³
Optimum Moisture Content	7.4%	16.6%	19.2%	11.2%	10.2%

^{*} Table to be read with accompanying letter.

GRAIN SIZE ANALYSIS

FILE NO.: 8-10-5013

LAB NO.: **S027**

SAMPLE DATE: May 4, 2010

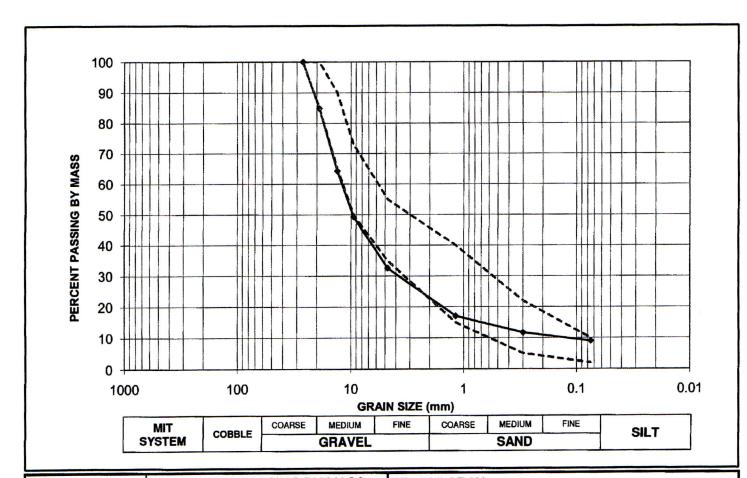
SAMPLED BY: Client

PROJECT:

Newalta Landfill

LOCATION:

unknown


CLIENT:

AECOM Client

SAMPLE SUPPLIER: SAMPLE LOCATION:

unknown

MATERIAL DESCRIPTION: Grey 26.5mm down crushed limestone, trace clay

SIEVE SIZE	PERCENT PAS	SING BY MASS	GRANULAR 'A'
(mm)	Tolerance Ranges	SAMPLE	OPSS FORM 1010
150			
37.5			Note:
26.5	100	100.0	The sample does not meet the tolerance
19.0	85 - 100	(\$4.5)	specifications for the percent passing
13.2	65 - 90		four sieve sizes.
9.5	50 - 73	1,000	
4.75	35 - 55	3 2.5	
1.18	15 - 40	17.1	
0.300	5 - 22	11.7	
0.150			
0.075	2 - 10	9.0	

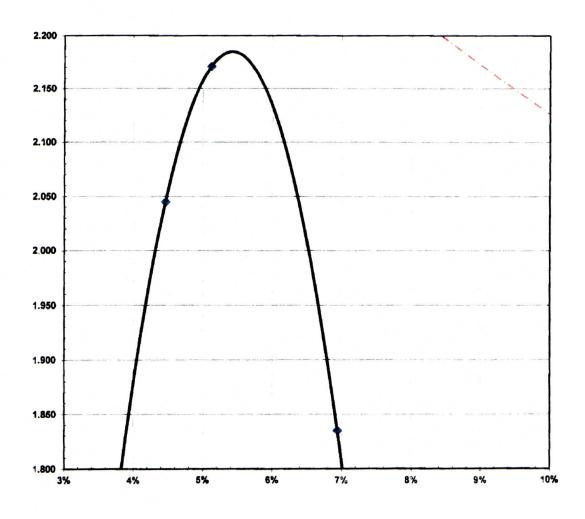
PROCTOR COMPACTION

PROJECT: Newalta Landfill LOCATION: Hamilton, Ontario

CLIENT: AECOM

SAMPLE DESCRIPTION: Granular A - N11-GA-001

SAMPLE LOCATION: N/A SAMPLE SUPPLIER: N/A


FILE No.: 8-10-5013 LAB No.: \$507

SAMPLE DATE: Novemebr 1, 2011

SAMPLED BY: Client

MAXIMUM DRY DENSITY (t/m³): 2.185
CORRECTED DRY DENSITY (t/m³): 2.185
OPTIMUM WATER CONTENT (%): 5.4

STANDARD PROCTOR COMPACTION

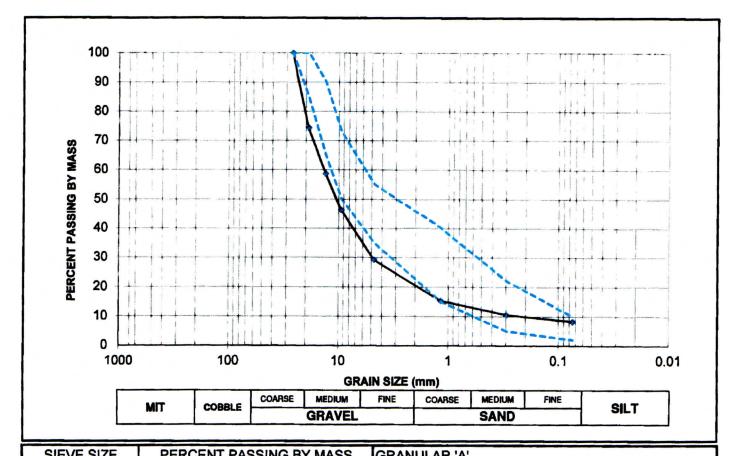
DRY DENSITY (T/cu.m.)

GRAIN SIZE ANALYSIS

PROJECT: LOCATION:

Newalta Landfill Hamilton, Ont. **AECON**

CLIENT:


SAMPLE SUPPLIER: N/A

SAMPLE LOCATION:

N/A MATERIAL DESCRIPTION: Gran A - N11-GA-001 FILE NO.: 8-10-5013 LAB NO.: **\$507**

SAMPLE DATE: Nov. 1, 2011

SAMPLED BY: Client

SIEVE SIZE	PERCENT PASS	ING BY MASS	GRANULAR 'A'
(mm)	Tolerance Ranges	SAMPLE	OPSS FORM 1010
150			
37.5			Note:
26.5	100	100.0	
19.0	85 - 100	74.3	
13.2	65 - 90	58.7	
9.5	50 - 73	46.3	
4.75	35 - 55	29.2	
1.18	15 - 40	15.3	
0.300	5 - 22	10.6	
0.150			
0.075	2 - 10	8.3	

PROCTOR COMPACTION

PROJECT: Newalta Landfill

LOCATION: Stoney Creek, ON

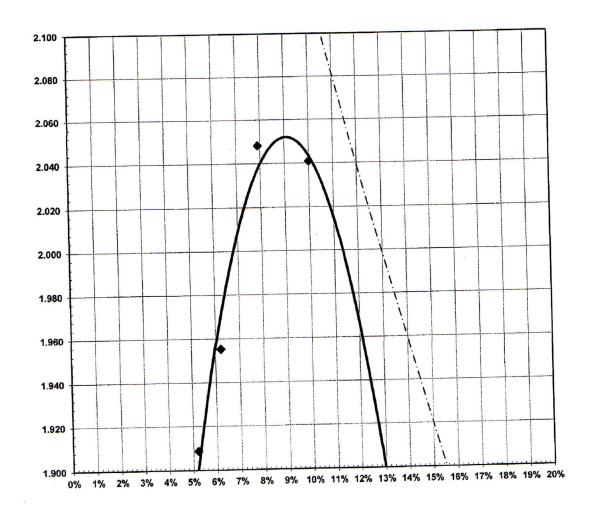
CLIENT: AECOM

SAMPLE DESCRIPTION: CY - Granular A

SAMPLE LOCATION: (N12-BGL-001)

SAMPLE SUPPLIER:

FILE No.: 72-10-5013


LAB No.: **S727**

SAMPLE DATE: August 8, 2012

SAMPLED BY: Client

MAXIMUM DRY DENSITY (t/m³): 2.050
CORRECTED DRY DENSITY (t/m³): 2.050
OPTIMUM WATER CONTENT (%): 9.0

STANDARD PROCTOR COMPACTION

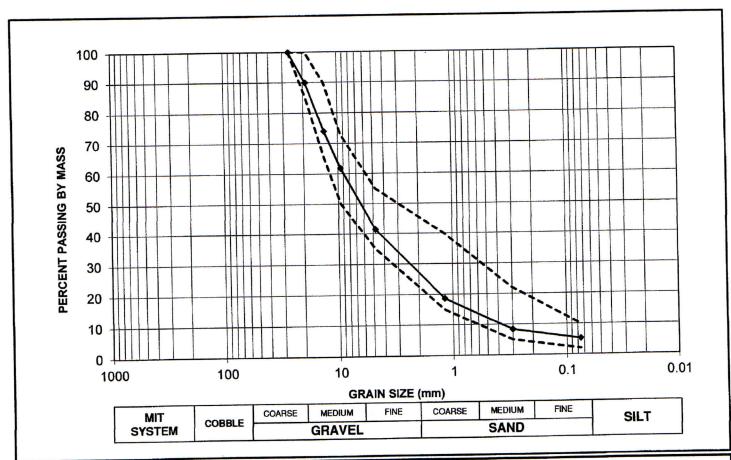
DRY DENSITY (T/cu.m.)

GRAIN SIZE ANALYSIS

PROJECT: LOCATION: Newalta - Landfill Stoney Creek, On

CLIENT:

AECOM


SAMPLE SUPPLIER: SAMPLE LOCATION: N/A N/A

MATERIAL DESCRIPTION: N12-BGL-001 - CY Granular A

FILE NO.: 72-10-5013 LAB NO.: **\$727**

SAMPLE DATE: August 8, 2012

SAMPLED BY: Client

SIEVE SIZE PERCENT PA		SING BY MASS	GRANULAR 'A'
(mm)	Tolerance Ranges	SAMPLE	OPSS FORM 1010
150			
37.5			Note:
26.5	100	100.0	2
19.0	85 - 100	89.9	
13.2	65 - 90	74.0	1
9.5	50 - 73	61.8] .
4.75	35 - 55	41.5	<u></u>
1.18	15 - 40	18.6	
0.300	5 - 22	8.3	
0.150			
0.075	2 - 10	5.2	

TABLE 1 SUMMARY OF LABORATORY TESTING

Torrongha CAMPI E ID	0007	0000			
Terraprobe SAMPLE ID	S027	S028	S029	S030	S031
AECOM SAMPLE ID	Granular A limestone	Berm Stockpile South, Sample #2	Berm Stockpile North, Sample #1	Engineered Fill Stockpile, East	Engineered Fill Stockpile, West
Terraprobe Sample Description	Grey 26.5mm down crushed limestone, trace clay	Brown Silty CLAY with Grey SILT, trace sand, trace gravel	Brown Silty CLAY, trace gravel, trace topsoil	Brown Silty SAND, some gravel	Brown Silty SAND, some topsoil, trace to some gravel
SIEVE SIZE					
150mm	100.0	100.0	100.0	100.0	100.0
26.5mm	100.0			96.2	94.5
19.0mm	84.8	99.6	93.4	90.7	93.2
13.2mm	64.3			85.5	91.1
9.5mm	49.3	98.2	92.9	79.9	89.8
4.75mm	32.6	96.1	92.3	70.8	84.6
1.18mm	17.1			58.5	79.6
0.300mm	11.7			49.6	69.1
0.075mm	9.0	87.4	85.8	36.2	36.3
Plastic Limit		15.0%	18.6%		
Liquid Limit		29.3%	35.1%		
Plasticity Index		14.3	16.5		
Maximum Dry Density	2.120 T/m³	1.765 T/m³	1.725 T/m³	2.008 T/m ³	1.968 T/m³
Optimum Moisture Content	7.4%	16.6%	19.2%	11.2%	10.2%

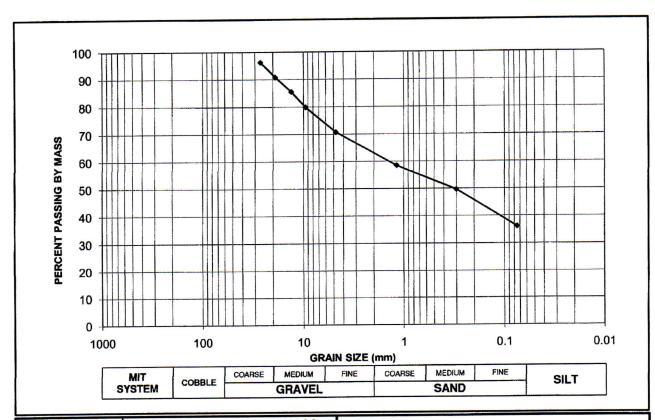
^{*} Table to be read with accompanying letter.

GRAIN SIZE ANALYSIS

PROJECT:

Newalta Landfill

LOCATION: unknown


CLIENT: SAMPLE SUPPLIER:

SAMPLE LOCATION:

AECOM Client

Engineered Fill (Stockpile, East) MATERIAL DESCRIPTION: Brown Silty SAND, some gravel

FILE NO.: 8-10-5013 LAB NO.: **S030** SAMPLE DATE: May 4, 2010 SAMPLED BY: Client

SIEVE SIZE	PERCENT PAS	SING BY MASS	
(mm)	Tolerance Ranges	SAMPLE	
150		100.0	
37.5			
26.5		96.2	
19.0		90.7	
13.2		85.5	
9.5		79.9	
4.75		70.8	
1.18		58.5	
0.300		49.6	
0.150			
0.075		36.2	

Appendix E

In situ Moisture Contents

Newalta Stormwater Ponds Stoney Creek, ON Moisture Content

Sample No.: 1

Date: 7/11/2012 Location: Ponds

Description: Low Perm Soil (Troxler % Moisture = 24.0)

Moisture Con	tent
Tare Number	4
Wet wt. plus Tare	701.9
Tare plus dry soil	608.4
Moisture	93.5
Tare	190.3
Dry Soil	418.1
% Moisture	22.4

Sample No.:2

Date: 7/11/2012
Location: Ponds
Description: Low Perm Soil (Troxler % Moisture = 24.3)

Moisture Content									
Tare Number	8								
Wet wt. plus Tare	789.3								
Tare plus dry soil	672.5								
Moisture	116.8								
Tare	190.2								
Dry Soil	482.3								
% Moisture	24.2								

Sample No.: 1

Date: 7/12/2012
Location: Ponds
Description: Low Perm Soil (Troxler % Moisture = 24.4)

Moisture Co	ntent
Tare Number	8
Wet wt. plus Tare	670.5
Tare plus dry soil	584.5
Moisture	86.0
Tare	190.1
Dry Soil	394.4
% Moisture	21.8

Project No.: 60265424
Tested by: Mike Stocker
Reviewed by: Marco Coscarella

Sample No.: 2

Date: 7/13/2012

Location: Ponds

Description: Low Perm Soil (Troxler % Moisture = 23.6)

Moisture Content									
Tare Number	4								
Wet wt. plus Tare	647.2								
Tare plus dry soil	563.2								
Moisture	84.0								
Tare	190.3								
Dry Soil	372.9								
% Moisture	22.5								

Sample No.: 1

Date: 10/16/2012
Location: Ponds
Description: Low Perm Soil (Troxler % Moisture = 18.5)

	Moisture Conter	nt
Tare Number		4
Wet wt. plus Ta	re	606.5
Tare plus dry so	oil	539.1
Moisture		67.4
Tare		190.4
Dry Soil		348.7
% Moisture	_	19.3

Sample No.: 1

Date: 10/17/2012
Location: Ponds
Description: Low Perm Soil (Troxler % Moisture =21.2)

Moisture Content									
Tare Number	4								
Wet wt. plus Tare	662.1								
Tare plus dry soil	582.5								
Moisture	79.6								
Tare	190.3								
Dry Soil	392.2								
% Moisture	20.3								

Appendix F

Field Testing Reports for the Forebay and Detention Pond (Clay)

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

TECHNICIAN: M Stocker

EARTHWORK CONTRACTOR: DATE TESTED: 7/11/2012

	2.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1										
	ELEVATION	LOCATION OF TEST	RY PROCTO	OR RESUL	TS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
1	1ST LIFT	1618N 1028E	S	98.0	22.5	1658	24.0	1628	98.2%	YES	Gr. Br. Clayey Silt
2	1ST LIFT	1593N 1045E	S	98.0	22.5	1658	24.3	1628	98.2%	YES	Gr. Br. Clayey Silt*
1	"	N1196 E1552	S	98.0	21.2	1650	23.6	1620	98.2%	YES	Gr. Br. Clayey Silt
2	"	N1222 E1560	S	98.0	19.2	1725	20.2	1740	100.9%	YES	Gr. Br. Clayey Silt
3	"	N1199 E1557	S	98.0	18.6	1707	21.0	1670	97.8%	YES	Gr. Br. Clayey Silt*
4	"	N1236 E1589	s	98.0	18.6	1707	20.7	1680	98.4%	YES	Gr. Br. Clayey Silt
5	"	N1255 E1587	S	98.0	18.6	1707	20.3	1670	97.8%	YES	Gr. Br. Clayey Silt*

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER REMARKS: *3 MORE PASSES WITH COMPACTION EQUIPMENT AFTER TEST WAS CONDUCTED AREA ACCEPTED ON A VISUAL BASIS

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

TECHNICIAN: M Stocker

EARTHWORK CONTRACTOR: DATE TESTED: 7/12/2012

	5.112.120.12.17.12.20.1										
	ELEVATION	LOCATION OF TEST	RY PROCTO	OR RESUL	TS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
3	2ND LIFT	1604N 1029E	S	98.0	22.5	1658	24.4	1626	98.1%	YES	Gr. Br. Clayey Silt
4	2ND LIFT	1590N 1033E	S	98.0	22.5	1658	24.0	1642	99.0%	YES	Gr. Br. Clayey Silt
1	"	N1196 E1552	S	98.0	21.2	1650	23.6	1620	98.2%	YES	Gr. Br. Clayey Silt
2	"	N1222 E1560	s	98.0	19.2	1725	20.2	1740	100.9%	YES	Gr. Br. Clayey Silt
3	"	N1199 E1557	s	98.0	18.6	1707	21.0	1670	97.8%	YES	Gr. Br. Clayey Silt*
4	"	N1236 E1589	s	98.0	18.6	1707	20.7	1680	98.4%	YES	Gr. Br. Clayey Silt
5	"	N1255 E1587	s	98.0	18.6	1707	20.3	1670	97.8%	YES	Gr. Br. Clayey Silt*

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

REMARKS: *3 MORE PASSES WITH COMPACTION EQUIPMENT AFTER TEST WAS CONDUCTED

AREA ACCEPTED ON A VISUAL BASIS

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 7/13/2012

	ELEVATION	LOCATION OF TEST	RY PROCTO	R RESUL	TS	F	IELD RESULT	s			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
5	3RD LIFT	1608N 1041E	S	98.0	22.5	1658	23.5	1635	98.6%	YES	Gr. Br. Clayey Silt
6	3RD LIFT	1587N 1043E	S	98.0	22.5	1658	23.6	1623	97.9%	YES	Gr. Br. Clayey Silt*

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

REMARKS: *3 MORE PASSES WITH COMPACTION EQUIPMENT AFTER TEST WAS CONDUCTED

AREA ACCEPTED ON A VISUAL BASIS

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 10/16/2012

	ELEVATION	LOCATION OF TEST	RY PROCTOR RESULTS FIELD RESULTS								
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M ³	%	KG\M³	%	YES/NO	
7	1ST LIFT	2	S	98.0	17.5	1735	18.5	1721	99.2%	YES	Gr. Br. Clayey Silt
8	1ST LIFT	1	S	98.0	18.6	1693	19.7	1666	98.4%	YES	Gr. Br. Clayey Silt
9	1ST LIFT	3	S	98.0	17.5	1735	19.2	1716	98.9%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

REMARKS: *3 MORE PASSES WITH COMPACTION EQUIPMENT AFTER TEST WAS CONDUCTED

AREA ACCEPTED ON A VISUAL BASIS

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 10/17/2012

	ELEVATION	LOCATION OF TEST	RY PROCTO	OR RESUL	гs	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M ³	%	YES/NO	
10	2ND LIFT	4	S	98.0	20.0	1675	21.2	1653	98.7%	YES	Gr. Br. Clayey Silt
11	2ND LIFT	5	S	98.0	16.6	1765	18.1	1768	100.2%	YES	Gr. Br. Clayey Silt*
12	2ND LIFT	6	S	98.0	17.5	1735	18.5	1700	98.0%	YES	Gr. Br. Clayey Silt
13	3RD LIFT	7	S	98.0	17.5	1735	18.6	1713	98.7%	YES	Gr. Br. Clayey Silt
14	3RD LIFT	8	S	98.0	17.5	1735	18.9	1718	99.0%	YES	Gr. Br. Clayey Silt
15	3RD LIFT	9	S	98.0	16.6	1765	18.6	1742	98.7%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER REMARKS: *3 MORE PASSES WITH COMPACTION EQUIPMENT AFTER TEST WAS CONDUCTED AREA ACCEPTED ON A VISUAL BASIS

Appendix G

Field Testing Reports for the Forebay and Detention Pond (Engineered Fill)

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 6/29/2012

	ELEVATION	LOCATION OF TEST	LABORATO	DRY PROC	TOR RESULTS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
1	193.0	1613N 1025E	S	95.0	12.4	1900	14.7	1887	99.3%	YES	Gr. Br. Clayey Silt
2	193.4	1609N 1033E	S	95.0	12.4	1900	14.4	1906	100.3%	YES	Gr. Br. Clayey Silt*
3	194.0	1583N 1039E	S	95.0	12.4	1900	14.2	1851	97.4%	YES	Gr. Br. Clayey Silt
4	195.0	1591N 1018E	S	95.0	11.2	2008	11.7	1976	98.4%	YES	Gr. Br. Clayey Silt
5	194.0	1617N 1039E	S	95.0	12.4	1900	14.9	1879	98.9%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 7/3/2012

	ELEVATION	LOCATION OF TEST	LABORATO	ORY PROC	TOR RESULTS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M ³	%	KG\M ³	%	YES/NO	
6	193.5	1587N 1021E	S	95.0	11.2	2008	12.6	1963	97.8%	YES	Gr. Br. Clayey Silt
7	194.1	1595N 1020E	S	95.0	12.4	1900	13.4	1893	99.6%	YES	Gr. Br. Clayey Silt
8	195.2	1620N 1021E	S	95.0	12.4	1900	14.4	1845	97.1%	YES	Gr. Br. Clayey Silt
9	194.3	1603N 1033E	S	95.0	11.2	2008	12.1	2010	100.1%	YES	Gr. Br. Clayey Silt*
10	193.7	1609N 1024E	S	95.0	11.2	2008	8.9	2040	101.6%	YES	Gr. Br. Clayey Silt*
11	195.1	1585N 1038E	S	95.0	12.4	1900	14.1	1860	97.9%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 7/4/2012

	ELEVATION	LOCATION OF TEST	LABORATO	ORY PROC	TOR RESULTS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M ³	%	KG\M³	%	YES/NO	
12	194.5	1602N 1025E	S	95.0	12.4	1900	10.6	1915	100.8%	YES	Gr. Br. Clayey Silt*
13	195.4	1615N 1040E	S	95.0	11.2	2008	11.5	2072	103.2%	YES	Gr. Br. Clayey Silt*
14	196.2	1620N 1021E	S	95.0	12.4	1900	11.5	1845	97.1%	YES	Gr. Br. Clayey Silt
15	195.9	1630N 1025E	S	95.0	11.2	2008	11.6	2064	102.8%	YES	Gr. Br. Clayey Silt*
16	194.8	1617N 1042E	S	95.0	12.4	1900	13.2	1849	97.3%	YES	Gr. Br. Clayey Silt
17	195.6	1616N 1038E	S	95.0	12.4	1900	13.4	1911	100.6%	YES	Gr. Br. Clayey Silt*
18	196.3	1615N 1040E	S	95.0	12.4	1900	13.2	1860	97.9%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 7/5/2012

	ELEVATION	LOCATION OF TEST	LABORATO	ORY PROC	TOR RESULTS	F	IELD RESULT	rs			
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M ³	%	KG\M ³	%	YES/NO	
19	197.6	1609N 1050E	S	95.0	12.4	1900	12.7	1921	101.1%	YES	Gr. Br. Clayey Silt*
20	196.9	1580N 1030E	S	95.0	11.2	2008	10.0	2033	101.2%	YES	Gr. Br. Clayey Silt*
21	197.2	1582N 1045E	S	95.0	11.2	2008	9.0	2029	101.0%	YES	Gr. Br. Clayey Silt*
22	196.7	1615N 1047E	S	95.0	12.4	1900	12.1	1847	97.2%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Forebay STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 7/6/2012

	ELEVATION	LOCATION OF TEST	LABORATO	ABORATORY PROCTOR RESULTS FIELD RESULTS							
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
23	198.3	1596N 1062E	S	95.0	14.2	1900	12.2	1843	97.0%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 9/25/2012

	ELEVATION	LOCATION OF TEST	LABORATO	BORATORY PROCTOR RESULTS FIELD RESULTS							
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M ³	%	YES/NO	
24	203.0	1647N 1113E	S	95.0	12.4	1900	11.7	1870	98.4%	YES	Gr. Br. Clayey Silt
25	201.0	1669N 1103E	S	95.0	22.6	1658	23.7	1578	95.2%	YES	Gr. Br. Clayey Silt
26	203.0	1653N 1155E	S	95.0	17.5	1735	19.6	1668	96.1%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 9/26/2012

	ELEVATION	LOCATION OF TEST	LABORATO	ORY PROC	TOR RESULTS	F	IELD RESULT	rs				
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL	
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED	
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO		
27	186.0	1644N 1113E	S	95.0	20.8	1680	22.6	1686	100.4%	YES	Gr. Br. Clayey Silt*	
28	185.0	1638N 1128E	S	95.0	20.5	1715	22.0	1666	97.1%	YES	Gr. Br. Clayey Silt	
29	184.0	1677N 1109E	S	95.0	22.6	1658	24.3	1610	97.1%	YES	Gr. Br. Clayey Silt	
30	187.0	1653N 1111E	S	95.0	22.6	1658	23.0	1615	97.4%	YES	Gr. Br. Clayey Silt	
31	199.0	1645N 1150E	S	95.0	11.2	2008	14.2	2013	100.2%	YES	Gr. Br. Clayey Silt*	
32	198.0	1632N 1137E	S	95.0	20.5	1715	22.3	1704	99.4%	YES	Gr. Br. Clayey Silt	

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 9/27/2012

	ELEVATION	LOCATION OF TEST	LABORATO	BORATORY PROCTOR RESULTS FIELD RESULTS							
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
33	202.0	1646N 1158E	S	95.0	22.5	1658	24.3	1647	99.3%	YES	Gr. Br. Clayey Silt*
34	203.0	1631N 1133E	S	95.0	12.4	1900	12.3	1828	96.2%	YES	Gr. Br. Clayey Silt

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

CLIENT: Newalta. JOB NUMBER: 60265424

LOCATION: Detention STORMWATER PONDS

JOB NAME: Newalta Stoney Creek Landfill

TEST METHOD: Nuclear Density Metre

GENERAL CONTRACTOR: Dufferin Construction Ltd.

EARTHWORK CONTRACTOR: DATE TESTED: 9/28/2012

	ELEVATION	LOCATION OF TEST	LABORATO	DRY PROC	TOR RESULTS	F	IELD RESULT	rs			·
NO	2		STD OR	SPEC.	OPTIMUM	MAX. DRY	MOISTURE	DRY	% COMP.	TEST RESULTS	MATERIAL
			MOD.		MOISTURE	DENSITY	CONTENT	DENSITY	OBTAINED	AS SPEC.	TESTED
		START FIRST LIFT	S/M	%	%	KG\M³	%	KG\M³	%	YES/NO	
35	201.0	1660N 1118E	S	95.0	12.4	1900	13.5	1844	97.1%	YES	Gr. Br. Clayey Silt
36	202.0	1677N 1109E	S	95.0	12.4	1900	12.7	1900	100.0%	YES	Gr. Br. Clayey Silt*
37	202.0	1654N 1165E	S	95.0	16.6	1765	15.9	1775	100.6%	YES	Gr. Br. Clayey Silt*

COMPACTION METHOD: 1 BOMAG BW213 PDH-40 VIBRATORY SHEEPS- FOOT ROLLER

Newalta Corporation

Stormwater Contingency and Remedial Action Plan Stage I Stormwater Management Facility Newalta Stoney Creek Landfill

Prepared by:

AECOM

 300 – 300 Town Centre Boulevard
 905 477 8400 tel

 Markham, ON, Canada L3R 5Z6
 905 477 1456 fax

 www.aecom.com
 905 477 1456 fax

Project Number:

60265424

Date:

May, 2013

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Consultant which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- · was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM
300 – 300 Town Centre Boulevard
Markham, ON, Canada L3R 5Z6
www.aecom.com

905 477 8400 tel 905 477 1456 fax

May 2, 2013

Mr. Lorenzo Alfano
District Manager – Hamilton Operations
Newalta Corporation
65 Green Mountain Road
Stoney Creek, ON L8J 1X5

Dear Mr. Alfano:

Project No: 60265424

Regarding: Stormwater Contingency and Remedial Action Plan

We are pleased to provide you with our report outlining contingency and remedial action measures associated with the stormwater management facility at the Newalta Stoney Creek Landfill. We understand that this report will be used to satisfy Condition 6 (1) of Environmental Compliance Approval No.5400-7DSSHU for Industrial Sewage Works issued by the Ministry of the Environment for the site.

Thank you for the opportunity to provide our expertise and professional services. Please do not hesitate to contact us with any questions or comments.

Sincerely,

AECOM Canada Ltd.

Brian Dermody, P. Eng.

Senior Environmental Engineer, Environment

Brian.Dermody@aecom.com

BMD Encl

cc: Mr. Geoffrey Knapper, MOE

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
2	2	Newalta Corporation
1	0	Ministry of the Environment, Hamilton District Office

AECOM Signatures

Report Prepared By:

Brian Dermody, P. Eng.

Senior Environmental Engineer, Environment

Report Reviewed By:

Joseph Puopolo, P. Eng., PMP

Senior Environmental Engineer, Environment

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List

		page
1. lı	ntroduction	1
•	.1 Background	1 1
2. S	Stormwater Management Facility	1
3. N	Monitoring and Operation	3
4. C	Contingency Actions	6
5. F	Remedial Actions	7
List of I	Figures	
Figure 1.	Stormwater Management Facility Layout	2
Figure 2.		
List of	Tables	
Table 1.	Stormwater Management Monitoring – Sampling Location: SWM Pond	5
Table 2.	Leachate Monitoring – Sampling Location: Leachate Pumping Station	5
Table 3.	Trigger Parameters	6

Appendices

Appendix A Environmental Compliance Approval

1. Introduction

1.1 Background

Newalta Corporation operates the Newalta Hamilton (Stoney Creek) Landfill in Stoney Creek, Ontario. The site has been operating since December 1996 under Environmental Compliance Approval (ECA) No. A181008 issued by the Ministry of the Environment (MOE).

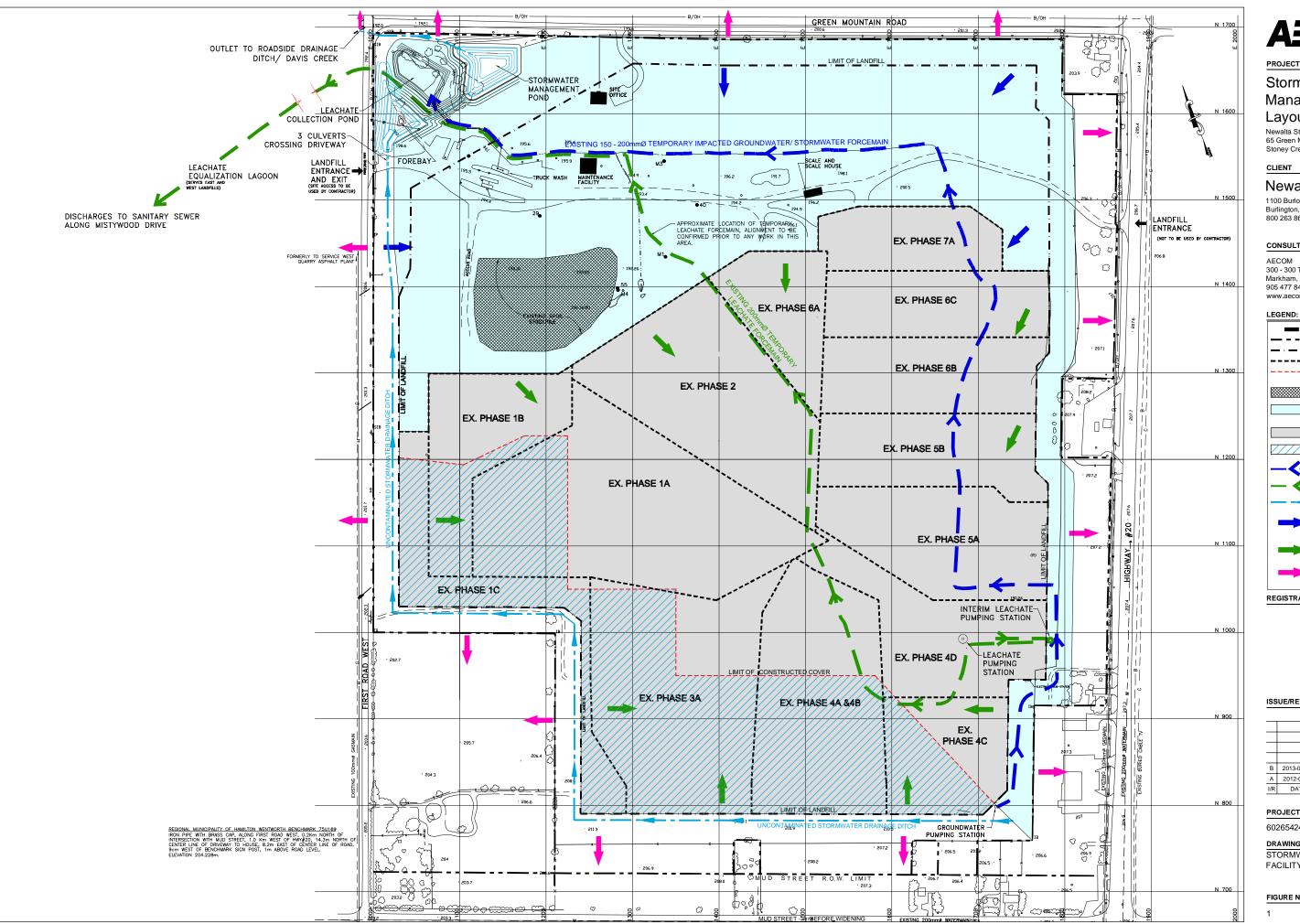
Stage I of the site's Stormwater Management Facility (SMF) was approved by the MOE under ECA No. 5400-7DSSHU for Industrial Sewage Works, issued May 1, 2008. Construction of the Stormwater Management Pond (SWM Pond) was completed in April, 2013. The quality assurance work undertaken during SWM Pond construction will be submitted under separate cover. An overview of the site layout, indicating the location of the SMF and completed SWM Pond is shown in Figure 1. A copy of the ECA is included in Appendix A.

This report is being submitted in compliance with Condition 6 (1) of the ECA for the SMF, which states:

Condition 6 (1):

Before the commencement of operation of the **Works (SWM Pond)**, the Owner shall prepare a "Stormwater Contingency and Remedial Action Plan" for the Works **(SWM Pond)** and provide a copy to the District Manager.

1.2 Scope of Report


The remainder of this report is organized as follows:

- Section 2 presents a brief overview of the Stormwater Management Facility;
- b) Section 3 summarizes the monitoring and recording requirements;
- c) Section 4 presents the contingency actions; and
- d) Section 5 presents the remedial actions that have been developed.

2. Stormwater Management Facility

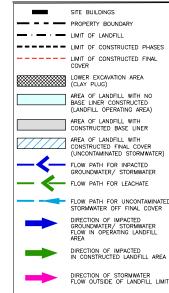
The Stage I Stormwater Management Facility receives uncontaminated stormwater runoff from approximately 34 hectares of the south and west portions of the landfill site where the 0.75 metre thick final cover is in place. The SMF generally functions as follows:

1. Uncontaminated stormwater runoff is shed from the final cover, and conveyed to the northeast corner of the site through a perimeter drainage ditch approximately 1,450 metres in length running along the south and west sides of the landfill. The ditch has a minimum depth of 1.0 m, a bottom width of 1.0 m, side slopes of 3H:1V, and is designed to handle stormwater runoff from a 100-year storm event.

AECOM

PROJECT

Stormwater Management Facility Layout


Newalta Stoney Creek Landfill 65 Green Mountain Road Stoney Creek, Ontario L8J 1X5

Newalta Corporation

1100 Burloak Drive, 5th Floor Burlington, Ontario L7L 6B2 800 263 8602 tel

CONSULTANT

300 - 300 Town Centre Blvd. Markham, ON L3R 5Z 6 905 477 8400 tel 905 477 1456 fax www.aecom.com

REGISTRATION

ISSUE/REVISION

В	2013-05-02	Issued for M.O.E. Submission
Α	2012-06-27	Issued for Client Review
I/R	DATE	DESCRIPTION

PROJECT NUMBER

60265424

DRAWING TITLE

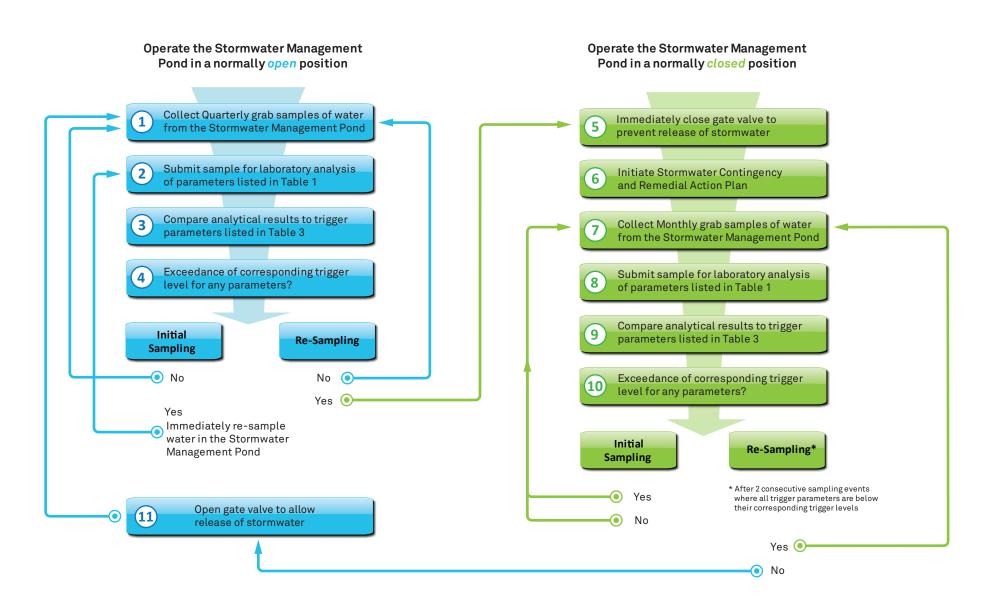
STORMWATER MANAGEMENT FACILITY LAYOUT

FIGURE NUMBER

- 2. Stormwater is discharged from the ditch through three (3) 675 mm diameter concrete culverts underneath the existing landfill entrance/exit to the SWM Pond forebay.
- 3. The forebay includes a 600 mm thick bottom clay liner and a permanent pool depth of 1.5 metres. Water flows around a 2.0 m wide by 8.5 m long gabion wall, through a 900 mm diameter HDPE pipe to the main (wet) cell of the SWM Pond.
- 4. The main cell includes a 600 mm thick bottom clay liner, and provides 2,060 m³ of permanent storage capacity (including forebay) and 4,265 m³ of extended detention storage capacity (including forebay). Stormwater flows around a 2.0 m wide by 30.0 m long gabion wall to the outlet structure.
- 5. The outlet structure consists of a 1500 mm diameter precast concrete catchbasin inlet; a reverse slope 300 mm diameter pipe, with a 125 mm diameter orifice plate; a gate valve (**normally open**); a 750 mm diameter HDPE discharge pipe, outletting through a 760 mm diameter CSP; and roadside ditches to Davis Creek.
- 6. The SWM Pond also includes an emergency overflow structure consisting of a 15.0 m wide, 200 mm deep overflow weir constructed with geotextile, a geoweb cellular system, and granular stone infill discharging to the existing leachate collection pond.

In addition to the SMF, the site also includes a collection system to handle leachate impacted groundwater and stormwater, which will generally function as follows:

- Leachate impacted groundwater and stormwater runoff from the southeast corner of the site is conveyed to a leachate collection pond in the northwest corner of the site by a 18.9 L/sec capacity pumping station and forcemain approximately 1,600 m long and 150 to 200 mm in diameter to
- 2. Leachate impacted groundwater is also collected via the existing truck wash pad, and discharged via a sewer approximately 130 m long and 450 mm in diameter to the leachate collection pond.
- 3. The leachate collection pond is approximately 2.0 m deep, and provides a total of 4,600 m³ storage capacity, and is equipped with a 18.0 L/sec pump to dispose of collected leachate impacted stormwater runoff and groundwater to a leachate equalization lagoon.
- 4. The leachate equalization lagoon is located north of the closed Taro West Landfill Site, and has a storage capacity of approximately 7,000 m³.
- 5. The leachate equalization lagoon is equipped with a gate valve and flow meter, and discharges via a gravity sewer approximately 460 m long and 250 mm in diameter to a manhole at Mistywood Drive, City of Hamilton, and ultimately to the City of Hamilton sanitary sewage collection system for treatment at the Woodward Avenue Sewage Treatment Plant.


3. Monitoring and Operation

Upon commencement of operation of the SMF, a monitoring and recording program will be implemented for stormwater and leachate. An overview of the monitoring program is outlined in the process flow diagram shown in Figure 2.

Figure 2

Newalta Stoney Creek Landfill - Stormwater Management Facility Monitoring Program - Process Flow Diagram

Based on MOE Environmental Compliance Approval No. 5400-7DSSHU for Industrial Sewage Works, Issued May 1, 2008

Grab samples of stormwater will be collected from the SWM Pond at a quarterly frequency and analyzed for the parameters listed in Table 1.

Table 1. Stormwater Management Monitoring - Sampling Location: SWM Pond

General Parameters	Metals	Field Parameters
Alkalinity	Arsenic	Conductivity
Hardness	Aluminum	Dissolved Oxygen
pH	Boron	pH
Chloride	Beryllium	Temperature
Sulphate	Cadmium	
Sodium	Chromium	
Calcium	Cobalt	
Potassium	Copper	
Magnesium	Iron	
Nitrate as Nitrogen	Lead	
Nitrite as Nitrogen	Manganese	
Total Ammonia	Mercury	
Un-ionized Ammonia	Molybdenum	
Total Suspended Solids (TSS)	Nickel	
Total Organic Carbon (TOC)	Silver	
Total Phosphorus	Selenium	
Total Kjeldahl Nitrogen (TKN)	Vanadium	
Biochemical Oxygen Demand (CBOD5)	Zinc	
Total Phenols (4AAP)		

Grab samples of leachate will also be collected from the Leachate Pumping Station on a quarterly basis and analyzed for the parameters listed in Table 2.

Table 2. Leachate Monitoring – Sampling Location: Leachate Pumping Station

Parameter	Parameter	Parameter
Conductivity	Arsenic	Volatile Organics
Alkalinity	Aluminum	Non-halogenated Volatiles
Hardness	Boron	Water Soluble Volatiles
pH	Beryllium	Base Neutral Extractables
Chloride	Cadmium	Acid Extractables
Sulphate	Chromium	Phenoxy Acid Herbicides
Sodium	Cobalt	Organochlorine Compounds
Calcium	Copper	Neutral Chlorinated Compounds
Potassium	Iron	Oil and Grease
Magnesium	Lead	Fatty and Resin Acids
Nitrate as Nitrogen	Manganese	PCBs
Nitrite as Nitrogen	Mercury	
Total Ammonia	Molybdenum	
Un-ionized Ammonia	Nickel	
Total Suspended Solids (TSS)	Silver	
Total Organic Carbon (TOC)	Selenium	
Total Phosphorus	Vanadium	
Total Kjeldahl Nitrogen (TKN)	Zinc	
Biochemical Oxygen Demand (CBOD5)		
Total Phenols (4AAP)		

0.002

0.03

The gate valve in the SWM Pond outlet structure will be operated in a normally open position, allowing clean stormwater runoff to discharge from the site. Monitoring results obtained from the SWM Pond will be compared with the trigger levels of the trigger parameters listed in Table 3.

Parameter	Unit	Trigger Levels
pH	-	6.5 – 8.5
Conductivity	uS	700
Ammonia (un-ionized)	mg/l	0.04

mg/L

mg/L

Table 3. Trigger Parameters

Provided quarterly monitoring results for the trigger parameters listed in Table 3 are below their corresponding trigger levels, the gate valve can continue to be operated in a normally open position. In the event that a monitoring result for any of the parameters listed in Table 3 exceeds its corresponding trigger level, an additional sample will be obtained immediately to confirm the concentration for that parameter.

If an exceedance is not confirmed after the second round of sampling, the gate valve can continue to be operated in a normally open position, and normal quarterly sampling can continue. However, if the presence of any parameter of concern is confirmed after the second round of sampling, the gate valve will be closed immediately and operated in a normally closed position.

Following the closure of the gate valve, the contingency and remedial actions noted in Sections 4 and 5 will be implemented to prevent the release of impacted water from the site and to investigate potential sources of contaminants. Monitoring of the trigger parameters will be conducted on a monthly frequency, and the gate valve will resume operating in a normally open position when monitoring results for all trigger parameters from 3 consecutive sampling events are less than their respective trigger levels.

4. Contingency Actions

Phenols

Total Phosphorus

In the event that SWM Pond monitoring confirms any trigger parameter has exceeded the corresponding trigger level, the following contingency actions shall be implemented:

- Ensure that the gate valve in the SWM Pond outlet structure is firmly closed.
- Verify that no flow from the SWM Pond is being discharged to the roadside ditches to Davis Creek.
- With the gate valve closed, impacted stormwater will flow by gravity from the SWM Pond via the emergency overflow structure, and discharge into the leachate collection pond.
- Confirm that the emergency overflow weir is functioning properly, and is the only discharge point for impacted stormwater.
- Pump the impacted water from the leachate collection pond to the leachate equalization pond as required.
- Confirm that the leachate equalization lagoon is functioning properly, and that impacted water is being discharged to the City of Hamilton sanitary sewer at Mistywood Drive.
- Manage water levels in the SWM Pond, Leachate Collection Pond, and Leachate Equalization Lagoon such that no impacted water escapes containment. Use additional pumps as required.
- Initiate appropriate remedial measures as soon as possible to limit the volume of impacted stormwater reaching the drainage system.

5. Remedial Actions

In the event that SWM Pond monitoring confirms any trigger parameters exceed their corresponding trigger levels, the following general remedial actions shall be undertaken:

- 1. Attempt to identify the source(s) of contamination, including:
 - Disturbed or eroded areas in the final cover.
 - Leachate seeps through the final cover.
 - Runoff from exposed waste within landfill entering the perimeter drainage ditch.
 - Runoff from site roads entering the perimeter drainage ditch.
 - Sediment, waste or other foreign materials in the drainage ditch, forebay, and SWM Pond.
- 2. Remediate any issues identified under Item 1):
 - Repair/re-establish final cover in any disturbed or exposed areas.
 - Repair any leachate seeps observed in the final cover.
 - Re-grade exposed waste areas to provide positive drainage away from drainage ditch.
 - Maintain clean road surfaces and/or divert runoff from roadways away from drainage ditch.
 - Remove any sediment, waste, or other foreign objects from ditches and ponds

Routine inspection of the SWF should be undertaken to avoid the need for contingency or remedial actions. Regular monitoring for the above noted issues, regardless of stormwater monitoring results, will benefit SWF operations by eliminating additional monitoring requirements and reducing the volume of stormwater discharged as leachate.

Appendix A

Environmental Compliance Approval

CERTIFICATE OF APPROVAL INDUSTRIAL SEWAGE WORKS

NUMBER 5400-7DSSHU Issue Date: May 1, 2008

Newalta Industrial Services Inc. 65 Green Mountain Rd W Stoney Creek, Ontario L8J 1X5

Site Location:

Newalta Stoney Creek Landfill

65 Green Mountain Rd

Hamilton City,

L8J 1X5

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

stormwater management facility and leachate collection and disposal facility to service Newalta Stoney Creek Landfill (formerly known as Taro East Landfill) located in the City of Hamilton, consisting of the following:

STORMWATER MANAGEMENT FACILITY

constructing a stormwater management facility to service a total of 34 ha drainage area of Phase1 of Newalta Stoney Creek Landfill designed to provide quantity and quality control of stormwater runoff from storm events with up to 1:100 year return frequency, consisting of the following:

Stormwater Management Pond (SWM Pond)

A stormwater management facility to service 34.0 ha drainage area of Phase 1 of the landfill consisting of the south and west portions of the total 74.0 ha landfill property consisting of the following:

- one (1) approximately 1,400 m long perimeter ditch running along the south and west side of the landfill site having a minimum depth of 1.0 m, bottom width of 1.0 m and side slopes of 3H:1V, designed to handle stormwater runoff from 1:100 year return frequency storm events, discharging through a 1,050 mm diameter HDPE culvert to a forebay described below;
- one (1) forebay with a 600 mm bottom clay line and a depth of 1.5 m connected through a

900 mm diameter HDPE pipe to a wet detention pond described below;

- one (1) 2.0 m deep extended wet detention pond (SWM Pond) with 600 mm bottom clay liner, providing 2,072 m³ of permanent storage capacity (including forebay) and 4,789 m³ of extended detention storage capacity (including forebay), equipped with an outlet structure consisting of one (1) 1200 x 1200 mm precast concrete catchbasin inlet, a reverse slope 300 mm diameter pipe with a 125 mm orifice plate, a gate valve (normally open), a 750 mm diameter HDPE discharge pipe, discharging through a 760 mm diameter CSP and side road ditches to Davis Creek;
- one (1) emergency overflow structure consisting of 15.0 m wide, 200 mm deep overflow weir constructed with granular stone infill and geotextile, discharging to leachate collection pond described below;
- including all controls and associated appurtenances.

LEACHATE IMPACTED GROUNDWATER AND STORMWATER COLLECTION SYSTEM

Leachate Collection Pond

- one (1) approximately 1,600 m long 150 to 200 mm diameter forcemain equipped with a 18.9 L/sec capacity pumping station conveying leachate impacted groundwater and stormwater runoff from the southeast corner of the landfill site to a leachate collection pond described below:
- one (1) approximately 130 m long 450 mm diameter sewer receiving leachate impacted stormwater runoff from the active parts of the landfill site and truck wash pad, discharging to a leachate collection pond described below;
- one (1) 2.0 m deep leachate collection pond, providing a total of 4,600 m³ storage capacity, equipped with a 18.0 L/sec capacity pump to dispose off collected leachate impacted stormwater runoff and groundwater to a leachate equalization lagoon described below;

Leachate Equalization Lagoon

- one (1) approximately 7,000 m³ storage capacity leachate equalization lagoon located north of the closed Taro West Landfill Site, discharging through a gravity sewer described below;
- one (1) approximately 460 m long 250 mm diameter gravity sewer, equipped with a gate valve and a flow meter, extending from the leachate equalization lagoon described above to a manhole at Mistywood Drive, City of Hamilton, discharging to the City of Hamilton sanitary sewage collection system for treatment at the Woodward Avenue STP; and
- including all controls and associated appurtenances.

all in accordance with the Application for Approval of Industrial Sewage Works submitted by Newalta Industrial Services Inc. dated July 9, 2007, all supporting design specifications and drawings prepared by Gartner Lee Limited, Markham, Ontario, and the following documents:

- 1. "Stormwater Management Design Report, Phase 1, Newalta Stoney Creek Landfill" dated June 2007, prepared by Gartner Lee Limited, Markham, Ontario.
- 2. "Newalta Industrial Services Inc., Stoney Creek Operating Landfill, 2006 Annual Report" (CD report) dated June 30, 2007, prepared by Jackman Geosciences Inc.
- 3. "Taro East Quarry Environmental Assessment Design and Operations Report" dated January 1995, prepared by Garner Lee Limited.
- 4. Letter from Gartner Lee Limited dated March 24, 2008 providing response to an additional information request letter from Environmental Assessment and Approvals Branch, MOE dated February 14, 2008.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Act" means the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended;

"CBOD5" means five day carbonaceous (nitrification inhibited) biochemical oxygen demand measured in an unfiltered sample;

"Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the Act, and includes any schedules;

"Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;

"District Manager" means the District Manager of the Hamilton District Office of the Ministry;

"Ministry " means the Ontario Ministry of the Environment;

"Owner" means Newalta Industrial Services Inc. and includes its successors and assignees;

"Substantial Completion" has the same meaning as "substantial performance" in the Construction Lien Act; and

"Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- (1) The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- (3) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (4) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. EXPIRY OF APPROVAL

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3. CHANGE OF OWNER

- (1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within 30 days of the change occurring:
 - (a) change of Owner;
 - (b) change of address of the Owner;
 - (c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*;
 - (d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*;

(2) In the event of any change in ownership of the *Works*, other than a change to a successor municipality, the *Owner* shall notify in writing the succeeding owner of the existence of this *Certificate*, and a copy of such notice shall be forwarded to the *District Manager* and the *Director*.

4. <u>UPON THE SUBSTANTIAL COMPLETION OF THE WORKS</u>

(1) Within one (1) year of the Substantial Completion of the Works, a set of as-built drawings showing the works "as constructed" shall be prepared. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the Works for the operational life of the Works.

5. MONITORING AND RECORDING

(1) The Owner shall, upon commencement of operation of the Works (SWM Pond), carry out the following monitoring program. Grab samples shall be collected from the designated sampling locations at a quarterly frequency and analysed for the following parameters listed in Table 1:

Table 1 Stormwater Management Monitoring Sampling Locations: SWM Pond							
General Parameters	Metals	Field Parameters					
Alkalinity	Arsenic	Conductivity					
Hardness	Aluminum	Dissolved Oxygen					
рН	Boron	рН					
Chloride	Beryllium	Temperature					
Sulphate	Cadmium						
Sodium	Chromium						
Calcium	Cobalt						
Potassium	Copper						
Magnesium	Iron						
Nitrate as Nitrogen	Lead						
Nitrite as Nitrogen	Manganese	•					
Total Ammonia	Mercury						
Un-ionized Ammonia	Molybdenum						
Total Suspended Solids (TSS)	Nickel						
Total Organic Carbon (TOC)	Silver						
Total Phosphorus	Selenium						
Total Kjeldahl Nitrogen (TKN)	Vanadium						
Biochemical Oxygen Demand (CBOD.	5) Zinc						
Total Phenols (4AAP)							

(2) The Owner shall collect grab samples of leachate from a designated sampling location at a

quarterly frequency and analyze for the parameters listed in Table 2:

Table 2 - LEACHATE MONITORING Sampling Location: Leachate Pumping Station								
Parameter Parameter	Parameter	Parameter Parameter						
Conductivity	Arsenic	Volatile Organics						
Alkalinity	Aluminum	Non-halogenated Volatiles						
Hardness	Boron	Water Soluble Volatiles						
рН	Beryllium	Base Neutral Extractables						
Chloride	Cadmium	Acid Extractables						
Sulphate	Chromium	Phenoxy Acid Herbicides						
Sodium	Cobalt	Organochlorine Compounds						
Calcium	Copper	Neutral Chlorinated Compounds						
Potassium	Iron	Oil and Grease						
Magnesium	Lead	Fatty and Resin Acids						
Nitrate as Nitrogen	Manganese	PCBs						
Nitrite as Nitrogen	Mercury							
Total Ammonia	Molybdenum							
Un-ionized Ammonia	Nickel							
Total Suspended Solids (TSS)	Silver							
Total Organic Carbon (TOC)	Selenium							
Total Phosphorus	Vanadium							
Total Kjeldahl Nitrogen (TKN)	Zinc							
Biochemical Oxygen Demand (CBOD5)								
Total Phenols (4AAP)								

- (3) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - (a) the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended from time to time by more recently published editions;
 - (b) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions;
 - (c) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions;
- (4) The measurement frequencies and parameter list specified in subsection (1) are

- minimum requirements which may, after 24 months of monitoring in accordance with this Condition, be modified by the *District Manager* in writing from time to time.
- (5) The *Owner* shall install and maintain a continuous flow measuring devices, to measure the flow rate of leachate from the *Works* (**Leachate Pumping Station**) with an accuracy to within plus or minus 15 per cent (+/- 15%) of the actual flow rate for the entire design range of the flow measuring device, and record the flow rate at a daily frequency.
- (6) The Owner shall retain for a minimum of three (3) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this Certificate.

6. OPERATION AND MAINTENANCE

- (1) Before the commencement of operation of the Works (SWM Pond), the Owner shall prepare a "Stormwater Contingency and Remedial Action Plan" for the Works (SWM Pond) and provide a copy to the District Manager;
- (2) The Owner shall operate the Works (SWM Pond) in a normally open position. The Owner shall compare monitoring results obtained from the SWM Pond under Condition 5 (1) with the trigger levels of the trigger parameters listed in Table 3 to identify any potential leachate impact to stormwater discharged from the site to the receiving surface water.

Table 3 - Trigger Parameters								
Parameter Unit Trigge								
pH	h-b	6.5 - 8.5						
Conductivity	uS	700						
Ammonia (un-ionized)	mg/L	0.04						
Phenols	mg/L					0.002		
Total Phosphorus	mg/L	0.03						

- (3) In the event that a monitoring result for any of the parameters listed in Table 3 exceeds its corresponding trigger level, the *Owner* shall immediately re-sample to confirm the exceedence for that parameter.
- (4) In the event that the presence of the parameter(s) of concern is (are) not confirmed after the second round of sampling conducted under Condition 6 (3), then, normal stormwater monitoring shall be resumed;
- (5) In the event that the presence of any parameter of concern is confirmed after the second round of sampling conducted under Condition 6 (3), the *Owner* shall operate the *Works* (SWM Pond) in a normally closed position and dispose the contents of the SWM Pond to the leachate collection system while recording the date and volume of contaminated stormwater being disposed of to the leachate collection system;

- (6) The *Owner* shall implement the "Stormwater Contingency and Remedial Action Plan" prepared under Condition 6 (1) and collect a grab sample and analyze for the trigger parameters listed under Condition 6 (2) at a **monthly frequency** preferably after a storm event;
- (7) The *Owner* shall resume operating the *Works* (**SWM Pond**) in a **normally open position** if monitoring results for all trigger parameters from three (3) consecutive sampling events conducted under Condition 6 (6) are less than their respective trigger levels.
- (8) Discharge of contaminated stormwater from the *Works* to storm sewer/surface water is prohibited, except where it is necessary to avoid loss of life, personal injury, danger to public health or severe property damage;
- (9) The Owner shall prepare an operations manual within six (6) months of Substantial Completion of the Works, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the Works;
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the *Works*:
 - (d) procedures for the inspection and calibration of monitoring equipment;
 - (e) procedures for receiving, responding and recording public complaints, including recording any follow up actions taken.
- (10) The *Owner* shall maintain the operations manual current and retain a copy at the location of the *Works* or operational office of the *Owner* for the operational life of the *Works*. Upon request, the *Owner* shall make the manual available to *Ministry* staff.
- (11) The *Owner* shall inspect the *Works* at least once a year and, if necessary, clean and maintain the *Works* to prevent the excessive build-up of sediments and/or vegetation.
- (12) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the site operations office for inspection by the *Ministry*. The logbook shall include the following:
 - (a) the name of the Works; and
 - (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

7. <u>REPORTING</u>

- (1) In addition to the obligations under Part X of the Environmental Protection Act, the Owner shall, within 10 working days of the occurrence of any reportable spill as defined in Ontario Regulation 675/98, bypass or loss of any product, by-product, intermediate product, oil, solvent, waste material or any other polluting substance into the environment, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill or loss, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation.
- (2) The *Owner* shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to *Ministry* staff.
- (3) The Owner shall prepare, and submit to the District Manager upon request, a performance report, on an annual basis, before June 30th following the end of the period being reported upon. The first such report shall cover the first annual period following the commencement of operation of the Works and subsequent reports shall be submitted to cover successive annual periods following thereafter. The reports shall contain, but shall not be limited to, the following information:
 - (a) a description of any operating problems encountered and corrective actions taken;
 - (b) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the *Works*;
 - (c) a summary of all stormwater and leachate monitoring results undertaken in the reporting period;
 - (d) a summary of the calibration and maintenance carried out on all monitoring equipment; and
 - (e) a summary of all By-pass, spill or abnormal discharge events.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the Owners their responsibility to notify any person they authorized to carry out work pursuant to this *Certificate* the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that the Works are constructed in a timely manner so that

standards applicable at the time of Approval of the *Works* are still applicable at the time of construction, to ensure the ongoing protection of the environment.

- 3. Condition 3 is included to ensure that the *Ministry* records are kept accurate and current with respect to the approved works and to ensure that subsequent owners of the *Works* are made aware of the *Certificate* and continue to operate the *Works* in compliance with it.
- 4. Condition 4 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references.
- 5. Condition 5 is included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the design objectives and effluent limits specified in the *Certificate* and that the *Works* does not cause any impairment to the receiving watercourse.
- 6. Condition 6 is included to require that the Works be properly operated, maintained, funded, staffed and equipped such that the environment is protected and deterioration, loss, damage to property or injury to any person is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the Ministry. Such a manual is an integral part of the operation of the Works. The manual will also act as a benchmark for Ministry staff when reviewing the Owner's operation of the work.
- 7. Condition 7 is included to provide a performance record for future references, to ensure that the *Ministry* is made aware of problems as they arise, and to provide a compliance record for all the terms and conditions outlined in this *Certificate*, so that the *Ministry* can work with the *Owner* in resolving any problems in a timely manner.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto, Ontario
M5G 1E5

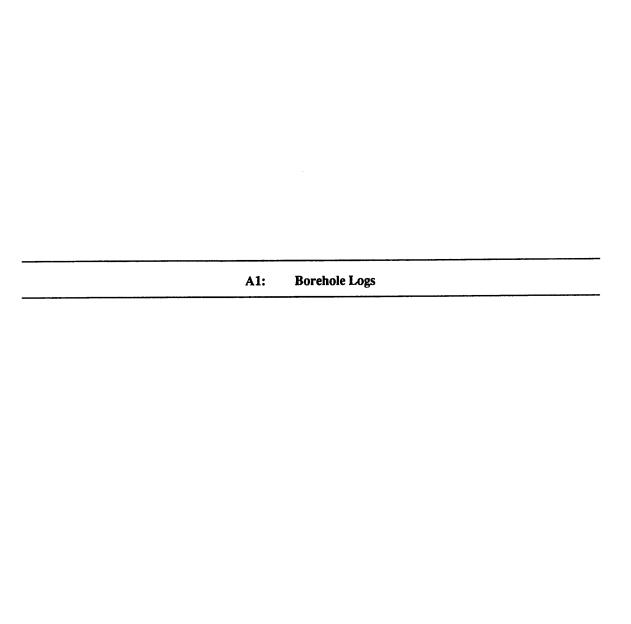
<u>AND</u>

The Director Section 53, Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 1st day of May, 2008


Mansoor Mahmood, P.Eng.

Director

Section 53, Ontario Water Resources Act

SH/c:

District Manager, MOE Hamilton - District Edward San, Gartner Lee Limited

<u>:</u> !
• :
:
· ·
! !
•
:
•
•
; ;
•
:
:

GRAPHICS, SYMBOLS AND ABBREVIATIONS ON LOGS

SAMPLE TYPES and TESTS

	SS	Split Spoon Sample
ቖ	SN	Non-Standard Split Spoon Sample
Ι	ST	Shelby Tube Sample: (unconfined compression or unconsolidated undrained test)
${ m I\hspace{1em}I}$	DS	Denision Type Sample
	PS	Piston Type Sample
Ξ	CS	Continuous Sample
$\underline{\mathbb{Y}}$	GS	Grab Sample
8	WS	Wash Sample
\underline{x}	BQ	BQ Core Sample
\underline{x}	HQ	HQ Core Sample
\mathbb{Z}	NQ	NQ Core Sample
Σ	DT	Dynamic Penetration Test

PENETRATION RESISTANCES

Standard Penetration Resistance(N Value)

Field Vane Test (undisturbed) - Field Vane Test (remoulded) -

The number of blows by a 63.6 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split spoon sampler for a distance of 300 mm (12 in.).

ABBREVIATIONS

VT

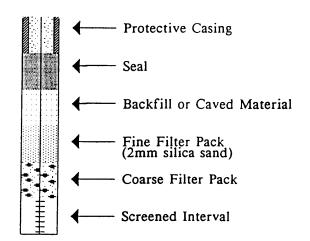
DTPL: Drier Than Plastic Limit
APL: About Plastic Limit
WTPL: Wetter Than Plasic Limit
K: Hydraulic Conductivity (m/s)
Cu: Undrained Shear Strength (kPa)
% REC: Percentage of Sample Recovered
% RQD: Indirect Measure of the Number of
Fractures and Soundness of Rock Mass
Approximate Water Table

GRAIN SIZE CLASSIFICATION %

trace, "eg. trace sand" some, "eg. some sand"	1 - 10 10 - 20
adjective, "eg. sandy"	20 - 35
and, "eg. and sand"	35 - 50
noun, "eg. sand"	>50

Note: Classification Divisions Based on Modified M.I.T. Grain Size Scale

SOIL DESCRIPTIONS


Cohesionless Soils

Relative Density	N	Va	lue
Very loose	0	to	4
Loose	4	to	10
Compact	10	to	30
Dense	30	to	50
Very Dense	0	ver	50

Cohesive Soils

Consistency	$C_{\mathbf{u}}(\mathbf{k}\mathbf{Pa})$	N Value
Very soft	0 to 12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	over 200	over 30

MONITOR DETAILS

BOREHOLE NO.1 & 2

		TARO AGGREGATES	NT -	TAR	o QL	JARR'	Y	PROJECT NO. 82-49 DATE March 17, 31, 1980
во	REH	OLE TYPE 7.6 cm AIRTRACK HOLE						
	¥		T	SAM	PLE			
тртн m) .0	STRATIGRAPHY	DESCRIPTION B.H.1, ELEVATION 193.7 m	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
		VINEMOUNT SHALE - Dark grey, aphanitic crystalline, medium to thick bedded shale.						Air track hole - no samples
. 10		Borehole terminated at 6.10 m in shale,					A	
		B.H.2, ELEVATION 193.3 m					·	
.03		RUBBLE VINEMOUNT SHALE Dark grey, aphanitic crystalline medium to thick bedded shale. GOAT ISLAND DOLOSTONE Medium grey, aphanitic crystal- line, medium to thick bedded dolostone; minor shale lenses.	NX NX NX NX NX NX		100 100 100 100 100	100 100 100 100 100 100	A	Diamond drill hole
1.1		Borehole terminated at 11.13 m in dolostone.						

BOREHOLE NO. 3 & 4

		HADDOCEOI OCTUVI WOOGOOMEN						92.40
		CT NAME HYDROGEOLOGICAL ASSESSMEN						
		TARO AGGREGATES	·					
во	REH	OLE TYPE TARO QUARRY AIRTRACK, 7	GEOLOGIST A.B.					
ELI	EVAT	TON						TECHNOLOGIST
			r	0.4.4				
EPTH	STRATIGRAPHY			SAM				
m)	IGR/	DESCRIPTION		0.E		ÆRY	GROUND WATER	REMARKS
	RAT		TYPE	BLOW/	۵	* RECOVERY		
.0	ST	B.H.3, ELEVATION 193.4 m	1	100	RQ	% BR		
		VINEMOUNT SHALE Dark grey,						Airtrack hole
		aphanitic crystalline, medium to thick bedded shale.						- no samples
		The same of the sa						
.10								
		Borehole terminated at 6.10 m						
		in shale.						
						•	:	
.0		B.H.4, ELEVATION 194.1 m		,				1
		VINEMOUNT SHALE Dark grey						Airtrack hole
		aphanitic crystalline, medium to thick bedded shale.						- no samples
							,	• • • • • • • • • • • • • • • • • • • •
		GOAT ISLAND DOLOSTONE grey, aphanitic, medium to thick						
.10		bedded dolostone.					·	
.62								
		Borehole terminated at 7.62 m					•	
		in dolostone.						
						\vdash		
_								
						-		
						-		
	1					-		5

BOREHOLE LOGPROJECT:92-372BOREHOLE:5-I1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:17 March 1980TARO QUARRIES - STONEY CREEKGEOLOGISTABFOR:TARO AGGREGATES LTD.ELEVATION192.1 m ASL

	T :			_											
	STRATIGRAPHY		OR LS BER	_		S		PLI	E	<u> </u>					
DEPTH	TIGE	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	E E	INTERUA		VALUE	WATER	ပ္	٥	ı	OVE	Y		QD
(m)	A.		589	NUMBER	H	TYPE		3	REC	g G		(%)	\perp	(%)
	ST			Ž	В	í-	z	*	×	×	25	0 75 10	0	25 5	75 100
0.5 1.3		TOPSOIL Dark brown to brown fine sandy silt, rootlets, some fine subangular gravel and clay, moist, compact. CLAYEY SILT								-					
2.0		Brown clayey silt, reworked, trace fine sand, APL, stiff.													
3 - 3.5 3.6 4 - 4.5 5 -		BANDY SILT Brown, slightly mottled light grey, fine sandy silt, trace clay, slightly laminated, moist, compact. SANDY SILT TILL Brown fine sandy silt, trace to some fine subangular gravel to coarse sand, horizontal to vertical fracturing with black oxidation, occasional dolostone fragments, moist, very dense. Till with weathered dolostone below about 3.4 m. GOAT ISLAND DOLOSTONE SHALE Dark brownish grey, aphanitic to very fine crystalline, thin bedded shale, some horizontal and wertical fracturing, locally interlaminated to thinly finterbedded with dolostone. GOAT ISLAND DOLOSTONE Brownish grey to grey, fine crystalline, thin to medium bedded dolostone, moderate shale content, occasional shale stringers, minor occurrences of		-						-					
9 -		sphalerite mineralization and small calcite infilled vugs locally. -Locally interlaminated with shale below about 6.3 m. -3 cm cavity lined with well formed calcite crystals at about 6.6 m.	***************************************							1					
		Borehole terminated at 10.67 m in dolostone. Note: Borehole drilled in 1980 using Air Track, Stratigraphy revised using recent adjacent borehole 43-I.													

BOREHOLE NO. 5 & 6

`R(OJE	CT NAME HYDROGEOLOGICAL ASSESSM						
JLI	ENT	TARO AGGREGATES	DATE MARCH 17, 1980					
во	REH	OLE TYPE TARO QUARRY AIRTRACK -	GEOLOGIST A.B.					
ELE	EVAT	TION						TECHNOLOGIST
				;				
	Η			SAM	PLE			
PTH	STRATIGRAPHY			6		۲X	GROUND	
	TIG	DESCRIPTION		// 0.3		* RECOVERY	WATER	REMARKS
m)	TRA	D. H. F. FLEWATION 100 1	TYPE	BLOW/	Q)	ECC		
.0	S	B.H.5, ELEVATION 192.1 m	T	60	R	× E		
		TILL: Medium brown sandy-silt		\vdash				
.90		till, wet.						Airtrack hole
.90 .€6		SAND & GRAVEL Medium brown sand						- no samples
		and gravel, wet.						
		GOAT ISLAND DOLOSTONE						
		AND ACTED DOLOGTONE M. I.						
76		ANCASTER DOLOSTONE Medium grey aphanitic, medium bedded cherty						
.76 0.6	7.	dolomite.						l
_		Develor to the Late 10, 67						
		Borehole terminated at 10.67 m in cherty dolostone.						
\dashv		in energy do ros conc.						
\dashv								
							<u> </u>	
		.						
.0 .15		B.H. 6, ELEVATION 188.3 m						
10		TOPSOIL TILL Medium brown sandy silt						
. 90		till, wet.						Airtrack hole
		GOAT ISLAND DOLOSTONE Medium grey	,					- no samples
\neg		aphanitic crystalline, medium						1
10		to fine bedded dolostone.						
		ANCACTED DOLOCTONE Modium						1
		ANCASTER DOLOSTONE Medium grey, aphanitic crystalline, medium to						
		fine bedded cherty dolostone.						
		•					A	1
0.80								
		Borehole terminated at 10.80 m in cherty dolostone.						
\dashv		in charty do to stolle.						
\dashv								
\dashv								
\dashv								
		1						t

BOREHOLE NO.__7_

PROJECT NAME_	HYDROGEOLOGICAL ASSESSMENT - TARO QUARRY	PROJECT NO
CLIENT	TARO AGGREGATES	DATE April 1, 1980
BOREHOLE TYPE	NODWELL 10.8 cm I.D. AUGERS, NX ROCK CORE	GEOLOGIST A.B.
ELEVATION	188.84 m 7.6 cm AII	RTRACK HOLE TECHNOLOGIST

	λΗ̈́		Τ	SAM	PLE			
ОЕРТН (m) 0.18	STRATIGRAPHY	TOPSOIL	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
		TILL Medium brown sandy silt						Diamond drill hole
2.74		till, wet, odd boulder.						for piezometer and airtrack hole for
		GOAT ISLAND DOLO STONE brown grey, fine to aphanitic	NX		57	100	·	standpipe.
		crystalline, medium to fine	NX			100		
79		bedded dolostone.	NX		96	100		
		ANCASTER DOLOSTONE	-					
	į	Medium grey cherty dolomite.	NX		94	100		
		rica rain grey ener by do roin rec.	NX			100		
		GASPORT DOLOSTONE blue grey,	-					
0.5	-	coarse crystalline dolomite.	NX		98	100		
1.68	3		- NX			100		
		DECEW-ROCHESTER	IXA		100	100		
\neg		DOLOSTONE-SHALE COMPLEX	NX		00	100		
4 94	1		11/	-	.00	100		
3.75		Borehole terminated at 14.94 m	1-	-				
		in a dolostone shale complex.	-					
		in a dotostone shate complex.						1
			<u> </u>					
]								
							·	
			\vdash					
\dashv						-		
\dashv			\vdash			\vdash		
\dashv			\vdash			\vdash		
\dashv			-				,	
-				\longrightarrow				
			\perp					
- 1								

PROJECT NAME	HYDROGEOLOGICAL ASSESSMENT - TARO QUARRY	PROJECT NO. 82-49
JLIENT	TARO QUARRY	DATE March 17, 1980
BOREHOLE TYPE	TARO QUARRY AIRTRACK - 7.6 cm BOREHOLE	GEOLOGIST A.B.
ELEVATION	190.9 m	TECHNOLOGIST

	λΗζ			SAMPLE		SAMPLE			
(m)	STRATIGE	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	% RECOVERY	GROUND WATER	REMARKS	
0.18 2.59		TOPSOIL TILL Medium brown sandy silt till, wet.						Airtrack hole - no samples	
		GOAT ISLAND DOLOSTONE Medium grey aphanitic, medium to fine bedded dolostone.							
7.93		ANCASTER DOLOSTONE Medium grey aphanitic, medium bedded cherty							
10,3 11, <u>5</u>	7 }	dolostone. GASPORT DOLOSTONE Blue grey, coarse crystalline dolo					A		
15.2		DECEW ROCHESTER DOLOSTONE-SHALE COMPLEX					•		
		Borehole terminated at 15.24 m in dolostone-shale complex.							
							,		
	1								

PROJECT NAME	HYDROGEOLOGICAL ASSESSMENT - TARO QUARRY	PROJECT NO. 82-49
CLIENT	TARO AGGREGATES	DATE March 17, 1980
BOREHOLE TYPE	TARO QUARRY AIRTRACK - 7.6 cm BOREHOLE	GEOLOGIST A.B.
ELEVATION	201.6 m	TECHNOLOGIST

	È			SAMPLE				
DEPTH (m) 0.0	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
		FILL Medium grey stony fill						
1.52		ERAMOSA DOLOSTONE Medium grey.						Airtrack hole - no samples
		ERAMOSA DOLOSTONE Medium grey, aphanitic, medium to thin bedded dolcstone.					·	- 110 Samples
		bedded dorestone.						
7.62								
		VINEMOUNT SHALE Dark grey, aphanitic, thick bedded shale.						
		aphanitic, thick bedded shale.						
11.5)						A	
		Borehole terminated at 11.59 m					:	
		in shale.						
								·
							•	
			ļ					
			 					
			ļ					
								1
 								
L			L	L J	L		L	

"ROJECT NAME	HYDROGEOLOGICAL ASSESSMENT -	TARO QUARRY	PROJECT NO. 82-	49
JLIENT	TARO AGGREGATES		DATE March 31, 1	980
BOREHOLE TYPE	NODWELL 10.8 cm I.D. AUGERS,	NX ROCK CORE	GEOLOGIST	A.B.
ELEVATION	203.5 m	7.6 cm AIRTRACK H	OLE TECHNOLOGIST	

	Ή			SAMPLE				
OEPTH	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	% RECOVERY	GROUND WATER	REMARKS
0.61		FILL Sandy silt till, stony wet	-	-	<u> </u>	, E		
		TILL Red brown sandy silt till,				\vdash		Diamond drillhole
2.59		wet.	NX		62	100		for piezometers
		ERAMOSA DOLOSTONE Medium brown,						and airtrack hole
		aphanitic crystalline, medium to thin bedded dolomite;	NX		60	100		for standpipe.
		shaly in zones, mineralized	NX		100	100		
			NV		06	100		
8.84			NX NX	-		100	;	·
		VINEMOUNT SHALE Dark grey	1111	_	100	100		·
		aphanitic crystalline, massive	NX		00	100		
		to thick bedded shale;	NX			100	A	
. –		- contains dolostone beds						
		- gypsum	NX		00	100		
15.09			NX		.00	100		
		GOAT ISLAND DOLOSTONE						
		Medium grey, fine to aphanitic	NX	ļ		100		
-		crystalline, thick bedded dolo-	NX	 	100	100		
19,66		stone, shaly zones.	-	 			•	
		Borehole terminated at 19.66 m						
		in dolostone.						
			 					
-			 			-		
			-	 	\vdash			
			 	\vdash	 			
_								·
<u> </u>								·
					<u> </u>			
L	1		1		l	1	l	

PROJECT NAME	HYDROGEOLOGICAL ASSESSMENT - TARO QUARRY	PROJECT NO. 82-49
CLIENT	TARO AGGREGATES	DATE March 18, 1980
BOREHOLE TYPE_	TARO QUARRY AIRTRACK - 7.6 cm BOREHOLE	GEOLOGISTA.B.
ELEVATION	199.5 m	TECHNOLOGIST

	ЬΗΥ		Τ	SAM	PLE			
DEPTH	STRATIGE	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	% RECOVERY	GROUND WATER	REMARKS
0.61		FILL Clay, silt, stones, moist ERAMOSA DOLOSTONE Medium brown	_					Airtrack hole
		grey, aphanitic, medium to thin bedded dolomite.						- no samples
6 10		VINEMOUNT SHALE Dark grey,						
		aphanitic, thick bedded shale.						
							A	-
12.20)							
		GOAT ISLAND DOLOSTONE Medium grey, aphanitic, thick						
		bedded dolestone.						
16.46		ANCASTER DOLOSTONE Grey cherty					•	
18.29		dolostone.			\dashv			,
		Borehole terminated at 18.29 m in cherty dolostone.						
						\dashv		
					_			
					\exists	廿		
				\dashv		\dashv		
					\dashv	\exists		
				\dashv	\dashv	\exists		·
		<u> </u>		\exists	\exists			·
				\dashv	\dashv	\dashv		

BOREHOLE NO. 12 & 13

		TARO ACCREGATES						
		TARO AGGREGATES						DATE March 18, 1980
		OLE TYPE TARO QUARRY AIRTRACK -						
ELE	EVAT	ION		TECHNOLOGIST				
	>		1	SAMI	DIF			T 1
EPTH	STRATIGRAPHY		<u> </u>					
	IGR,	DESCRIPTION		, O.3		* RECOVERY	GROUND WATER	REMARKS
m)	RAT		TYPE	BLOW/	RQD	Ó		
0.0	ST	B.H.12, ELEVATION 194.15 m	F	31	.R(× E		
		VINEMOUNT SHALE Dark grey,	<u> </u>					Airtrack hole
		aphanitic crystalline, medium to thick bedded shale.	<u> </u>					- no samples
		to three bedded share.	-					·
.10								1
		Borehole terminated at 6.10 m						
		in shale.						ļ
			<u> </u>					
			 					
.0		B.H. 13, ELEVATION 202.4 m		•				
-15		TOPSOIL						
44		TILL Sandy silt till, wet.						Airtrack hole - no samples
44		ERAMOSA DOLOSTONE Medium grey	 	-				- 110 Sumples
		aphanitic crystalline, medium	-	-				
		to fine bedded dolostone.						
.54		VINEMOUNT CUALE. David account	<u> </u>					
		VINEMOUNT SHALE Dark grey, aphanitic crystalline thick	<u> </u>					
		bedded shale.	-				•	
2.2)		\vdash		-			
	1	Borehole terminated at 12.20 m						
]	in shale.						
								·
			<u> </u>					

BOREHOLE NO. 14 & 15

PR	OJE	CT NAME HYDROGEOLOGICAL ASSESSME						
		TARO AGGREGATES		DATE March 17, 18, 1980				
во	REH	IOLE TYPE TARO QUARRY AIRTRACK -	GEOLOGIST A.B.					
ELI	EVAT	TION	-	TECHNOLOGIST				
	РНҮ			SAM				
m)	STRATIGRAPHY	DESCRIPTION	že	BLOW/ 0.3	۵	* RECOVERY	GROUND WATER	REMARKS
.0 .18	STE	B.H. 14, ELEVATION 188.0 m	TYPE	BL	RQD	»E		
.18 .05 .35		TOPSOIL TILL Medium brown sandy silt till, wet.						Airtrack hole - no samples
. 35		SAND & GRAVEL Medium brown, wet.						no sampres
		GOAT ISLAND DOLOSTONE Medium grey						
.40		aphanitic medium to fine bedded dolostone.						
		ANCASTER DOLOSTONE Medium grey,						
\neg		aphanitic, medium bedded cherty					•	
1.6	7	dolostone.					A	1
		Borehole terminated at 10.67 m in cherty dolostone.						
								1
O		B.H. 15, ELEVATION 201.2 m						
0 15		TOPSOIL						
44		TILL Sandy silt till, wet.						Airtrack hole - no samples
-		ERAMOSA DOLOSTONE Medium brown						no sumptes
		grey, aphanitic crystalline,						
		medium to thin bedded dolostone.						
\dashv								
54		WINEMOUNT CHALL D.						1
_		VINEMOUNT SHALE Dark grey, aphanitic crystalline, thin						1
_,		bedded shale.						
-/4		Ronahala taminatala 12 74		_				
\dashv		Borehole terminated at 11.74 m in shale.				\dashv		
\dashv								
\dashv		Ì			\dashv	-		
	Ī	į tarininininininininininininininininininin				$\neg \neg$		1

'ROJECT NAME_	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO. 82-49
		DATE June 23, 24, 1982
	10.8 cm I.D. AUGERS, NV 3 ROCK CORE, 7.6 cm	GEOLOGIST A.B.
	206.90 m	LE TECHNOLOGIST

	- 141	ION						TECHNOLOGIST
	ЭΗΥ			SAM	PLE			
(m)	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	% RECOVERY	GROUND WATER	REMARKS
0.15		TOPSOIL CLAYEY SILT Grey brown clayey						
		silt, A.P.L.	SS	36				
		- laminated, fractured - W.T.P.L. from 2.44 m	SS	15				
4.36								
		ERAMOSA DOLOSTONE Medium brown grey medium to	NV3		94	100		No water return during coring
		fine crystalline, thin to thick bedded dolo						during corring
		-weathered in upper portion	NV3		90	100		
		-shaly in zones						
			NV3		100	100		
_								
			NV3	-	100	100		
			INVS		100	100	A	
17.5	В							
		VINEMOUNT SHALE Dark grey	NV 3	-	100	100		
		aphanitic crystalline, thick bedded shale with dolo					•	
20.7	9		NV3		97	100		
		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, medium				-		
		to massive bedded dolo - some shaly zones.	NV3		79	100		
		- Some Shaff Zones.						
			NV3	-	100	100		
29.5	,		100		60	100		
		ANCASTER CHERTY DOLOSTONE Medium	NV3	\vdash	60	100		NOTE: Borehole term-
		grey, fine crystalline, thin to medium bedded cherty dolostone.					1	inated at 38.56 m in
_		20.00.000000000000000000000000000000000	NV3		61	100		a dolostone shale complex.
<u> </u>				-	-	-		
35.7	}	CASPORT DOLOSTONE Modium chicatal	NV3		21	100		
37.0	<u> </u>	GASPORT DOLOSTONE Medium crystal- line crinoidal dolostone.		_		<u> </u>		
<u> </u>	<u> </u>	DECEW-ROCHESTER DOLOSTONE-SHALE	<u> </u>	L	L	<u></u>	<u> </u>	Cortoer Lee Associates Limited

PROJECT NA	ME_H	YDROGEOLO(GICA	L STUDY	- EAS	ST QU	ARRY P	ROPE	RTY		PROJE	CT NO	o82-	49
CLIENT	T	ARO AGGRE	GATES	S							DATE	June	24, 25	, 1982
BOREHOLE .	TYPE_	10.8 cm 1	[.D.	AUGERS,	NV3	ROCK	CORE,	7.6	cm	AIR-	GEOLO	GIST	A.B	•
ELEVATION_		005 0					TI	RACK	HOL	E	TECHN			

	≻H¢		T^{-}	SAMPLE				
DEPTH	GRA	DESCRIPTION		9.3		ERY	GROUND	DEMARKS
(m)	STRATIGRAPHY		TYPE	BLOW/	RQD	% RECOVERY	WATER	REMARKS
0.18		TOPSOIL						
2.68		CLAYEY SILT Medium brown clayey silt, D.T.P.L. Fissures through-	SS	21				
		ERAMOSA DOLOSTONE Medium Out	NV3			100		
\vdash		prown grey, time crystalline.	11/3			100 100		
		medium bedded dolcstone			71	100		
		- weathered in upper portion - many shale partings						·
		J was part and	КЛК		91	100		
								.•
			NV3		100	100	!	
$\vdash \vdash \vdash$			11/3		100	100		
14.8	ı							
17.0	-	VINCHOUNT CHAIR D. 1	NV3		98	100		
\vdash		VINEMOUNT SHALE Dark grey, aphanitic crystalline, thick						
\vdash		bedded shale.	NV3		88	100		
		- platy, some dolostone beds.	11/3		00	100		
19.8		COAT ICLAND DOLOCTONE						
<u> </u>		Medium grey, fine crystalline,	ИV3		97	100		
		medium to thick bedded dolostone						
$\vdash\vdash\vdash$		some shale partingsslightly fossiliferous	1110					
		- singuity lossiliterous	NV3	-	97	100		
				\dashv	\dashv			
27.30			1V3		94	100		
		ANCASTER CHERTY DOLOSTONE			\Box			
\vdash		Medium grey, fine crystalline.	11/2	_				
		medium to thick bedded cherty dolostone.	1V3	┵	00	100		·
		4010.3 tolle.		-	-	\dashv		
			NV3	_	51	100		
33.92		GASPORT DOLO.STONE Coarse grained.					•	
35.08 35.39		DECEW ROCHESTER DOLOSTONE-SHALE						
				\dashv	\dashv	\dashv		
		Borehole terminated at 35.35 m in Decew-Rochester dolostone-shale Piezometer Tip						

BOREHOLE NO._18_

PROJECT NAME	HYDROGEOLOGICAL STUDY -	EAST QUARRY PROPERTY	PROJECT NO. 82-49
LIENT	TARO AGGREGATES		DATE June 21, 1982
BOREHOLE TYP	202 06 m	ROCK CORE 7.6 CM AIR-	GEOLOGIST A.B.
ELEVATION	202.06 m	TRACK HOL	E TECHNOLOGIST

	Σ			SAMPLE				
DEPTH	GRAF	DESCRIPTION		9.3 3		ERY	GROUND WATER	REMARKS
(m)	STRATIGRAPHY		TYPE	BLOW/	RQD	* RECOVERY	WAIEII	
		TOPSOIL						
2.13		FILL Clayey silt fill stones, moist, fractured	SS	21				No water return
		TILL Clayey silt till, wet						during coring.
3.96		fractured.	SS	7				aag
		ERAMOSA DOLOSTONE Medium brown						
		grey, fine crystalline, medium to thin bedded dolostone.	NX		45	100		
8.75			NX		Ω1	100		
0.73		VINEMOUNT SUM E Dank grov		-				
		VINEMOUNT SHALE Dark grey, aphanitic crystalline, medium to	NX		100	100	A	
		thick bedded shale - platy.	NX		00	100		
, _	·							
 						100		
-			NX		98	100		
16.4			<u> </u>	-	-			
		GOAT ISLAND DOLOSTONE Medium	NX		01	100		
		grey, medium to fine crystalline	<u> </u>	<u> </u>	91	100		
		medium to thick bedded dolcstone	-					
			NX		98	100		
						100		
22.8	5							
		ANCASTER CHERTY DOLCSTONE	NX		.00	100		
		Medium grey, medium to fine						
		crystalline, thick bedded cherty dolostone						
27.2	 }		NX		92	100		
		GASPORT DOLUSTONE Coarse crystal-						
28.30 29.50		line thick bedded DECEW-ROCHESTER DOLOSTONE						
2.3	<u> </u>	DOLOSTONE SHALE COMPLEX: Dark gre	<u></u>					
		aphanitic crystalline, thick			ļ			
		pedded dolostone-shale complex		<u> </u>	ļ			
			 	<u> </u>	<u> </u>			
_		Borehole terminated at 29.56 m	}	<u> </u>				
-		in dolostone-shale complex		-	-			
			 -		-	-		
-			<u> </u>	-	\vdash	-		
	L		<u> </u>	L	L		L	

PROJECT NAME_	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO.82-49
CLIENT	TARO AGGREGATES	DATE July 8, 1982
BOREHOLE TYPE	7.6 cm AIRTRACK HOLE	GEOLOGISTA.B.
ELEVATION	205.91 m	TECHNOLOGIST

	¥		T	SAMPLE				
DEPTH	STRATIGE	DESCRIPTION	TYPE BLOW, 0.3 RQD % RECOVERY		GROUND WATER	REMARKS		
10.16		TOPSOIL						
3.93		TILL Medium brown clayey silt till, moist.						Airtrack hole - no samples.
	-	ERAMOSA DOLOSTONE Medium brown grey, fine crystalline dolostone.						
16.7	<u>.</u>						A	
		VINEMOUNT SHALE Dark grey aphanitic crystalline.					•	
21.95	,					-		
		Borehole terminated at 21.95 m in shale.						
								·
		Piezometor Tin A Standain Tin						

PROJECT NAME_	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO. 82-49
LIENT	TARO AGGREGATES	DATE July 8, 1982
BOREHOLE TYPE	7.6 cm AIRTRACK HOLE	GEOLOGIST_A.B.
ELEVATION	000 00	TECHNOLOGIST
-		, , , , , , , , , , , , , , , , , , , ,

	γHζ			SAMPLE				
DEPTH	STRATIGRAPHY	DESCRIPTION		4/ 0.3 m		% RECOVERY	GROUND WATER	REMARKS
(m)			TYPE	BLOW/	RÒD	% RECC		
0.20		CLAYEY SILT Gray brown clayov						
2.44		CLAYEY SILT Grey brown clayey silt, D.T.P.L.						Airtrack hole -
		ERAMOSA DOLOSTONE						no samples
		Medium brown grey, fine crystal-						
		line dolostone.						
							•	
10.06							_	
		VINEMOUNT SHALE						
<u>^</u> -		Dark grey, aphanitic crystalline, shale.						
		3114 76 3						
16.40								
10.40								
		Borehole terminated at 16.46 m in shale.						
		in shale.						
\vdash								
\vdash								
$\vdash \vdash \vdash$						-		
1 -								
\mathbf{A}								
\vdash								
\vdash					-			

PROJECT NAME	HYDROGEOLOGICAL STUDY - EAST QUARR	Y PROPERTY	PROJECT NO. 82-49
CLIENT	TARO AGGREGATES		DATE June 22, 23, 1982
BOREHOLE TYPE	10.8 cm I.D. AUGERS, NX ROCK CORE.	7.6 cm AIR-	GEOLOGIST A.B.
ELEVATION	206.29 m	TRACK HOLE	TECHNOLOGIST

	γнζ			SAM	PLE			
DEPTH	STRATIGE	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
0.18		TOPSOIL						
		CLAYEY SILT Grey brown clayey silt, W.T.P.L.	SS		39			
4 57		- rust fissures, sand stringers.	SS		14			
		ERAMOSA DOLOSTONE Medium brown grey, fine crystalline, thick bedded dolo-	NX		100	100		
		stone - many shale partings	NX		100	100		-
			NX		95	100		
			MV					
			NX		97	100	A	
17.8		VINEMOUNT SHALE Dark grey,	NX		94	100		
		aphanitic crystalline, thick bedded shale.	NX		100	100		
00.0		- platy			.00	100	• .	
23.20		GOAT ISLAND DOLOSTONE	NX		95	100	:	
		Medium grey fine crystalline, thick bedded dolostone.	NX		90			
		-slightly fossiliferous -shaley in zones	NX		00	100		·
29.2 6			NX		.00	100	•	
		Borehole terminated at 29.26 m in dolostone.						
				\dashv				
		Piezometer Tin A Standning Tin						

BOREHOLE NO. 22_

PROJECT NAME	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO. 82-49
JLIENT	TARO AGGREGATES	DATE July 8, 1982
BOREHOLE TYPE_	7.6 cm AIRTRACK HOLE	GEOLOGIST A.B.
ELEVATION	203.86 m	TECHNOLOGIST

	¥			SAMI	PLE			
DEPTH (m)	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	ROD	* RECOVERY	GROUND WATER	REMARKS
- 0.76 - 0.76		TOPSOIL CLAYEY SILT ERAMOSA DOLOSTONE Medium brown grey, fine crystal- line dolcstone.						Airtrack hole - no samples.
-11-2	8	VINEMOUNT SHALE Dark grey, aphanitic crystalline shale.					A	
-16-2	2	Borehole terminated at 16.22 m in shale.					•	

PROJECT NAME	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERT	Y PROJECT NO. 82-49
	TARO AGGREGATES	DATE JULY 9, 1982
BOREHOLE TYPE	7.6 cm AIRTRACK HOLF	GEOLOGIST A.B.
ELEVATION	202.62 m	TECHNOLOGIST

	¥			SAM	PLE			
DEPTH	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	ROD	% RECOVERY	GROUND WATER	REMARKS
4.57		CLAYEY SILT Grey brown clayey silt. W.T.P.L. with depth. ERAMOSA DOLOSTONE Medium brown grey, fine crystalline dolostone						Airtrack hole - no sample
16.46		VINEMOUNT SHALE Dark grey, aphanitic crystalline shale. GOAT ISLAND DOLOSTONE Medium grey, medium to fine					•	
23.77		ANCASTER DOLOSTONE Medium grey, fine crystalline cherty dolo						
		Borehole terminated at 26.64 m in assumed dolostone.						

PROJECT NAME	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO82-49
LIENT	TARO AGGREGATES	DATE June 21, 22, 1982
BOREHOLE TYP	E 7.6 cm AIRTRACK HOLE	GEOLOGIST A.B.
FLEVATION	193.34 m	TECHNOLOGIST

	¥			SAM	PLE			
DEPTH	STRATIGRAPHY	DESCRIPTION		0.3 m	-	ERY	GROUND WATER	REMARKS
(m)	RATIC		TYPE	BLOW/	g)	* RECOVERY	WAIEN	TIEMATING
0.0	STI		<u></u>	31)X	% RE		
		VINEMOUNT SHALE Dark grey,						Airtrack hole
		aphanitic crystalline, medium to thick bedded shale - platy.						- no samples.
		•						
7 00								
7.20		GOAT ISLAND DOLOSTONE						
		Medium grey, fine crystalline, thick bedded dolostone.						-
10.8		thick bedded dolostone.	一				•	
		Borehole terminated at 10.8 m						
,		in dolostone.	<u> </u>					
			\vdash					
			<u> </u>					
					 	_	į	
			 					
			-	-	-	-		
				\vdash		ļ		
			-	 	 	-		
			-	 	-	1	1	
							1	
					<u> </u>		1	
 			\vdash	 	-	-	1	
]	

PROJECT NAME	HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO. 82-49
CLIENT	TARO AGGREGATES	DATE June 21, 22, 1982
BOREHOLE TYPE_	7.6 CM AIRTRACK HOLE	GEOLOGIST A.B.
ELEVATION	192.42 m	TECHNOLOGIST

	Ρ₹			SAMPLE				
(m) 0.0	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	% RECOVERY	GROUND WATER	REMARKS
		VINEMOUNT SHALE Dark grey, aphanitic crystalline, medium to thick bedded shale - platy.						Airtrack hole - no samples.
6.1								
		GOAT ISLAND DOLOSTONE Medium grey fine crystalline, thick bedded dolostone						
10.8		Borehole terminated at 10.8 m					•	
		in dolostone.						
							,	
						\exists		
								,
					$\frac{1}{1}$			
				\dashv	\dashv	\exists		

ROJECT NAME HYDROGEOLOGICAL STUDY - EAST QUARRY PROPERTY	PROJECT NO. 82-49
CLIENT TARO AGGREGATES	DATE June 21, 22, 1982
BOREHOLE TYPE 7.6 CM AIRTRACK HOLE	GEOLOGIST A.B.
ELEVATION 192.34 m	TECHNOLOGIST

	энγ			SAM				
(m)	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
0.6		FILL						
		VINEMOUNT SHALE Dark grey, aphanitic crystalline, medium to thick bedded shale - platy.						Airtrack hole - no sample.
ļ			-					
6.20			<u> </u>					
		GOAT ISLAND DOLOSTONE Medium grey fine crystalline, thick bedded dolostone.						
		thick bedded dolostone.						
10.8								
		Borehole terminated at 10.8 m in dolostone.						
			<u> </u>					
			-					
			-			\vdash		
			-	\vdash				
 			-			\vdash		
			 					
	l							
			 					
							i	
						L		
	•							
	1							
' -	1							·
			<u> </u>					
						_		
			<u> </u>			-		
	1		-	 		-		
í		I .	1		ı		ŧ	·

PROJECT NAME_	HYDROGEOLOGICAL	STUDY - EA	ST QUARRY	PROPERTY	PROJECT NO	82-49
CLIENT	TARO AGGREGATES				DATE June 2	1. 22. 1982
BOREHOLE TYPE.	7.6 cm AIRTRACK	HOLE			GEOLOGIST	
ELEVATION	193.79 m				TECHNOLOGIST	
					. Loi II to Lo aloi	

	¥			SAM	PLE			
(m) 0.0	STRATIGRAPHY	DESCRIPTION	TYPE	BLOW/ 0.3	RQD	* RECOVERY	GROUND WATER	REMARKS
		VINEMOUNT SHALE Dark grey, aphanitic crystalline, medium to thick bedded shale - platy.						Airtrack hole - no sample.
6.1	·	GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, thick bedded dolostone.					A	
10.8		Borehole terminated at 10.8 m in dolostone.					•	
				\dashv	+	\dashv		

BOREHOLE LOGPROJECT:88-197BOREHOLE:28-I1 of 1HYDROGEOLOGICAL INVESTIGATIONTARO QUARRIES, STONEY CREEKGEOLOGISTPWFOR: TARO AGGREGATES LTD.

	≥			SAMPLE														
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL		VALUE	WATER	REC	RQD	RE)V %)	ERY		R(
(111)	TRE		EDW	Ž	R	TYPE	Z	3	× 1	*	2			100	25	5 50	75 1	00
	v) 	VINEMOUNT SHALE		1	M	HQ			100	58	ĦĪ	T		-			T	П
0.6	덬	Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Occasional dolostone beds.			M													
1.1 1		Some gypsum infilling in fractures.		ŀ						-								
		-Dolostone bed from about 0.6 to 1.2 m.		,		НQ	i		83	44			ŀ	-		•		
2 -				l	M					-								
				3		НQ			100	88				+			A	
3 -	畐					,				_								
		•																
,						НQ				.00								
4.6	邑			4		нQ			100	100								
		GOAT ISLAND DOLOSTONE								_								
5 -		Medium grey, fine crystalline, medium to thick								_								
6.0		bedded dolostone. Numerous shale stringers, gypsum infilling.		5		НQ			100	93				Ī			1	
0.0 6 -		SHALE		ŀ							1			İ				
6.7	三	Dark brownish grey, medium bedded shale, interlaminated with dolostone, bioturbation at upper			Ä													
7 -		contact.		ŀε		НQ			100	94				+			4	١
8				ŀ							1							
					Ä,	НQ			100	100				+				1
9				ļ '		1102			100	100]							
10 -				۱ ا		НQ			100	106				+				†
11			#															
11.4							ļ	<u> </u>							$oldsymbol{\perp}$	\sqcup	_	<u> </u>
		Borehole terminated at 11.43 m in dolostone.			Ì													
•																		
ı																		
	<u> </u>				\perp	<u> </u>	<u></u>	1			<u></u>	_	<u> </u>	<u> </u>		 	<u> </u>	

Printed: 28 SEP 93

BOREHOLE LOGPROJECT:88-197BOREHOLE:28-II1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:14 March 1989TARO QUARRIES, STONEY CREEKGEOLOGISTPWFOR:TARO AGGREGATES LTD.ELEVATION192.5 m ASL

		NO MOOREOMILE LID.						1		V / X .						710	
	≿		_			S	AM	PLI	LE			_					
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	NUMBER	INTERUAL	TYPE	1 VALUE	. WATER	REC	80		()VE %)			RQ (%)
	တ		50984-10 THE	_	П	-		× ×	× ×	× ×	2	5 50	75 1	00	25	50 7	5 100
0.6 1.1 1 - 3 - 4.6 5 - 5.8		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Occasional dolostone beds. Some gypsum infilling in fractures. -Dolostone bed from about 0.6 to 1.2 m. GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, medium to thick bedded dolostone. Numerous shale stringers, gypsum infilling. Borehole terminated at 5.83 m in dolostone. BOREHOLE DRILLED DIRECTLY BY AIRTRACK, STRATIGRAPHY INFERRED FROM 28-I AND DRILL CUTTINGS					Z	×	l ×	-			751				5 100
L					П								\perp				

Printed: 28 SEP 93

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 28-III 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 11 February 1992TARO QUARRIES, STONEY CREEKGEOLOGIST SMAFOR: TARO AGGREGATES LTD.ELEVATION 192.5 m ASL

FUK:		O AGGREGATES ETD.									_				$\overline{}$			
	}		ا م	SAMPLE														
	d d		MONITOR DETAILS & NUMBER												1			
DEPTH	뗥	STRATIGRAPHIC DESCRIPTION	EFE	ΩĽ	8			띪	-		RI	ECC	\mathbf{v}	ER	Y	R	QD)
1	Ĕ	DIMITION DESCRIPTION	ZEZ	3	H	nı l	VALUE	WATER	REC	200		(%)	1		C	%)	
(m)	₹		₹ 0 3	NUMBER	INTERUA	TYPE									-	$\overline{}$	1	
	STRATIGRAPHY			Ž	H	⊢	z	×	×	×	2	5 5	0 7	5 100) 2	5 50	75	100
	===	VINEMOUNT SHALE			П						Γ							
0.6	드리	Dark grey, aphanitic to fine crystalline, thin to																-
		medium bedded shale. Occasional dolostone beds.		Ì														
1.1 1		Some gypsum infilling in fractures.		-						-	1							
	邑	-Dolostone bed from about 0.6 to 1.2 m.			П													
				ŀ													-	
2 -	드러			ŀ	П					-	1						- 1	
	듬크										İ							
	듬크						İ											
3	[= =			ŀ						-	1							
																	- 1	
	==																	
4	扫			ŀ		i				•	1						ı	
4.6	==										ĺ							1
1		GOAT ISLAND DOLOSTONE	1 1															
5 -		Medium grey, fine crystalline, medium bedded		F			ļ			-	1						1	
İ		dolostone. Numerous shale stringers, gypsum infilling.	1				İ		i									
-																	- 1	
6.0				1-	\dagger	-					T	\vdash			\top			
		Borehole terminated at 6.00 m in dolostone.		1													- [
								l		İ	1	ļ						1
		NOTE: Borehole drilled using an Air Track		1				}			1							
		Precussion Drill. Stratigraphy inferred from adjacent				İ								1				
	1	borehole 28-I. BH 28-III is a an upgraded						1							ı			
		replacement of BH 28-II.	1	1							İ							ŀ
	1		1							1								
			ĺ	1	1				l		1							
	1																	
	ļ		1								1	1						
															ĺ			
			1					1										
							İ											
	1			1							Ì							- 1
	1					1									-			
							}				1							
	1																	
									1									
1																		
										1								
			1															
1																		
			-								1							
L																		

Printed: 28 SEP 93

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 28-IV 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 11 February 1992TARO QUARRIES, STONEY CREEKGEOLOGIST SMAFOR: TARO AGGREGATES LTD.ELEVATION 192.5 m ASL

		NO MOCKED MIES ETD.								· A.							_	
	Ή		-	L		S	AM	<u>PL</u> I	E									
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	UALUE	WATER	REC	RQD			%)			RQ (%	o)	
	S			z	Ц	۰	Z	*	×	×	2	5 50	75 1	Ö0	25	50 7	75 10	0
0.6 1.1 1 -		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Occasional dolostone beds. Some gypsum infilling in fractures. -Dolostone bed from about 0.6 to 1.2 m.								-								
3 -			***************************************	_						_								
4.3	==		Œ	ļ	H						Щ	_	4	\sqcup	\perp	4	\sqcup	_
		NOTE: Borehole drilled using an Air Track Precussion Drill. Stratigraphy inferred from adjacent borehole 28-I.																

Printed: 28 SEP 93

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 29-I 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 1 March 1989FARO QUARRIES, STONEY CREEKGEOLOGIST PWFOR: TARO AGGREGATES LTD.ELEVATION 194.2 m ASL

FOR:	IAI	O AGGREGATES LTD.						<u> </u>				 				
	בו					S	AM	PLE	Č							
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	ТҮРЕ	N VALUE	% WATER	% REC	% RQD		%)	ERY	25	RQ (%	
0.8		FILL Sand and gravel.														
1 -		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to		1		HQ			100	50_			T		Ī	
2.0 ₂		medium bedded shale. Numerous dolostone bedsDolostone bed from about 1.4 to 2.0 m.		_						-						
-				2		HQ HQ			100	29			•	•		
3 -				3		НQ			100	97-						
4 -										-						
*			75	4		НQ			92	58					•	
5 - 5 .5				-						-	1					
6 -		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, thick to massive		5		НQ			100	100						
		bedded dolostone. Numerous shale stringers, occasional gypsum infilling, some fossils, trace clay														
7.0 7 -		seams. SHALE		6		НQ			98	95						4
7.6 8 -		Dark brownish grey, medium bedded shale, interlaminated with dolostone, bioturbation at upper	-	_												
		icontact.		7		НQ			100	98			•			
9 -				•												
10.3 10 -		-Small shale layer observed near bottom of hole.		-						-	-					
10.3		Borehole terminated at 10.28 m in dolostone.														

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 29-II 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 14 March 1989TARO QUARRIES, STONEY CREEKGEOLOGIST PWFOR: TARO AGGREGATES LTD.ELEVATION 194.2 m ASL

		NO AGGREGATES ETD.							LL							731	
	λHc		D.		_	S	AM	PLI	3		Γ						
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS NUMBER	NUMBER	INTERVAL	TYPE	N VALUE	% WATER	% REC	x RQD		(%	6)			RQ (%)
ļ	S S	DITY	gereran i	_	Д			•			2	5 50	75 10	00	25	50 7	5 100
0.8 1.4 2.0 2		FILL Sand and gravel. VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Numerous dolostone bedsDolostone bed from about 1.4 to 2.0 m.	#######################################	-						-							
		Borehole terminated at 4.43 m in shale. BOREHOLE DRILLED DIRECTLY BY AIRTRACK, STRATIGRAPHY INFERRED FROM 29-I AND DRILL CUTTINGS															

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 29-III 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 12 February 1992TARO QUARRIES, STONEY CREEKGEOLOGIST SMAFOR: TARO AGGREGATES LTD.ELEVATION 194.2 m ASL

FUR:		TO AGGREGATES ETD.		Γ		S	AM	PLE	<u> </u>				T	 	
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL		N VALUE	% WATER	% REC	x RQD	(%	VE)		 RQ] (%)	
0.8 1 -1 1.4		FILL Sand and gravel. VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Numerous dolostone beds. -Dolostone bed from about 1.4 to 2.0 m.		_						1					
3 -				_						-					
5.5		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, medium bedded dolostone, occasional shale stringers, some fossils.								-					
		Borehole terminated at 7.00 m in dolostone. NOTE: Borehole drilled using an Air Track Precussion Drill. Stratigraphy inferred from adjacent borehole 29-I.													

Printed: 28 SEP 93

BOREHOLE LOG	PROJECT:	97-557 TARO	BOREHOLE:	29-IV 1 of 2
HYDROGEOLOGICAL INVESTIGATIONS			DATE: 6 June	1997
Stoney Creek, Ontario			GEOLOGIST	TLC
FOR: TARO AGGREGATES LTD.			ELEVATION	194.20 m ASL

		בו				S	AM	PLE								
DEPTI (m)	er	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	N VALUE	% WATER	% REC	x RQD	-1	(%)	ERY	25	RQ	
	\dashv	<u>ω</u>	FILL		-	H	F				1	7 30 /	1 1	23	30 /	75 100
1.0	1		Sand and gravel.			7,110			100							
		킄	VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to		1	HQ			100	18						
1.7		킄	medium bedded shale. Numerous dolostone beds.		2	HQ			100	72			=			4
	2 -	\exists	-Dolostone bed (VFZ) from about 1.7 to 2.4 m.		-	Ĭ				-						
2.4		昌				N										
	3 -	킄			_											
	-	莒				HQ			100	none and a						1
					3	НQ			100	92						
	4 -	邑			-	N .				-						
										2000						
	5 -	ヨ	•		L 4	HQ			100	83			H			
	-	三														
5.8		뎔														
	6 -	A	GOAT ISLAND DOLOSTONE ,		5	HQ			100	100						1
6.7		团	Medium grey, fine crystalline, thick to massive bedded dolostone. Numerous shale stringers,													
6.8	7	月	occasional gypsum infilling, some fossils, trace clay		L											
7.2	•	昌	seams.	T .		N										
8.0		三	1-Large gypsum nodule and gypsum seam (UFZ) 1 observed between about 6.7 and 6.8 m.		6	HQ			100	85				1		A
8.0	8	叧	SHALE	1	ŀ	1			1							
			Dark brownish grey, medium bedded shale,			N										
	9		interlaminated with dolostone, bioturbation at upper		L											
9.4	,	M	contact.		7	нQ			100	91			*			A
		A	-Thin to medium bedded from about 8.0 to 9.4 mApproximate lower extent of UMFZ at about 9.4 m.													
	10 -	14	-Approximate lower extent of ONLY 2 at about 7.4 m.		ł					-	1					
	11				8	НС	2		100	100						1
	11	14														
	12	扫	-Becoming locally siliceous below about 12.2 m.		ŀ						1		11			
			Zooming roundy similar to the same similar to		9	HC	2		100	95			[11
	47	14														
	13	H		4							1					
						N.										A
14.3	14		-Extent of LMFZ from about 14.2 to 14.4 m.		10	HO	5		100	84			[
			ANCASTER CHERT BEDS	‡												
<u></u>			Brownish grey to greyish brown aphanitic to fine			W			1		<u>_</u>	Щ.	11		Ų.	
Pri	nte	d: 1	8 JUN 98						t		ja	rtn	er L	ee	Li	mite

BOREHOLE LOG	PROJECT:	97-557 TARO	BOREHOLE:	29-IV 2 of 2
HYDROGEOLOGICAL INVESTIGATIONS			DATE: 6 June	e 1997
Stoney Creek, Ontario			GEOLOGIST	TLC
FOR: TARO AGGREGATES LTD.			ELEVATION	194.20 m ASL

				Г		S	AM	PLF					\exists			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL		N UALUE	% WATER	% REC	% RQD	(% 5 50)			RQ:	
16 16.5 16.8		crystalline, thick bedded siliceous dolostone with chert nodules and beds. -LFZ encountered at about 16.5 m.		11		НQ			100	94		T				A
		Borehole terminated at 16.79 m in dolostone.			N											
														And the second s		
														And the second s		
	Ш	2 71 N 09												Ļ		

BOREHOLE LOG PROJECT: 88-197

HYDROGEOLOGICAL INVESTIGATION

TARO QUARRIES, STONEY CREEK
FOR: TARO AGGREGATES LTD.

BOREHOLE: 30-I 1 of 1

DATE: 9 March 1989

GEOLOGIST PW

ELEVATION 201.7 m ASL

FOR:	IAI	RO AGGREGATES LTD.							Ŀ	LE	V A	110	N	201	.7	m A	<u> SL</u>	
	È			T			S	AM	PLI	3					I			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	R NUMBER	NUMBER	INTERUAL	TYPE	N UALUE	% WATER	% REC	% RQD		(%	VER) 75 100			RQE (%)	
		INDUSTRIAL FILL				Т						П					П	
1 -		Black heterogeneous mix of sand, clay, silt, and gravel with industrial debris throughout. Moist to wet, compact.									-							
2 -											-							
3 -		NOTE: Soil sample details and locations shown on borehole log 30-II.									-							
4 -											-							
5 -				_							-							
6 -				-							_							
7 -				-							_							
8.2 8 -		-Brown silty clay at assumed bedrock interface.		-							H							
9.1 9 -		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Occasional dolostone beds,		_	1	H	IQ			100	17				1			
10 -		trace fossilsVery weathered to about 8.5 mDolostone from about 8.5 to 9.1 m.		_	N	H	IQ			100	86						4	
11 -				-	N	Н	IQ			88	61						A	
12 - 12.4			*****	-		H					_							
		Borehole terminated at 12.35 m in shale.																

BOREHOLE LOG PROJECT: 88-197 BOREHOLE: 30-II 1 of 1

HYDROGEOLOGICAL INVESTIGATION DATE: 9 March 1989
TARO QUARRIES, STONEY CREEK GEOLOGIST PW

FOR: TARO AGGREGATES LTD.

ELEVATION 201.8 m ASL

FOR:	IAF	O AGGREGATES LTD.							LL	1 71 1	201.	6 III ASE
	Σ					S	AM	PLI	Ξ.			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL		N VALUE	% WATER	% REC	% RQD	N VALUE 15 30 45 60	WATER CONTENT (%)
	₩	INDUSTRIAL FILL			Т							
1 -		Black heterogeneous mix of sand, clay, silt, and gravel with industrial debris throughout. Moist to wet, compact.		1		SS	4	25.0		-	-	A
2 -		NOTE: Split spoon sample intervals taken from borehole 30-I.								-		
3 -				2	2	SS	32	14.5				
5 -				-	3	ss	29	13.5		_		A
6			***************************************		4	ss	14	17.6				A
8.2 8 8.6		-Brown silty clay at assumed bedrock interfaceVery weathered dolostone encountered at bottom of hole.	***************************************	-	5	SS	27	9.0				•
		Borehole terminated at 8.59 m in dolostone. BOREHOLE AUGERED WITHOUT SAMPLING TO BEDROCK INTERFACE, STRATIGRAPHY INFERRED FROM 30-I AND AUGER CUTTINGS										
										1		

BOREHOLE LOGPROJECT:88-197BOREHOLE:31-I1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:10 March 1989TARO QUARRIES, STONEY CREEKGEOLOGISTPWFOR:TARO AGGREGATES LTD.ELEVATION201.2 m ASL

	¥			Г			AM	PL	E.		r			T		
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL		N VALUE	% WATER	% REC	% RQD		(%	VER'		R((%	_
1 -		INDUSTRIAL FILL Black heterogeneous mix of sand, clayey silt, and gravel with industrial debris throughout. Moist to wet, compact to very dense.								_						
2 -		NOTE: Soil sample details and locations shown on borehole log 31-II.								-						
4 - 5 -										_						
6 -		-Greenish-grey silty clay fill with brown sandy gravel below 6.0 m.		-						-						
7 - 8 - 8.4		-Saturated below 7.3 mFill mixed in with rock fragments at bedrock interface.		. 1		НQ			100	0			1			
8.8		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin bedded shale. Numerous dolostone beds. High dolomitic content throughoutDolostone from about 8.4 to 8.9 m.		ì	M	HQ			100	53_			3			
10 -				3		HQ			100	90						•
12.1 ₁₂		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, medium bedded dolostone. Some gypsum infilled vugs, shale stringers,		4		НQ			83	73-						
		trace fossils. Borehole terminated at 13.15 m in dolostone.														

BOREHOLE LOG	PROJECT: 88-197	BOREHOLE: 31-II 1 of 1
HYDROGEOLOGICAL INVESTIG	ATION	DATE: 10 March 1989
TARO QUARRIES, STONEY CRE	EK	GEOLOGIST PW
FOR: TARO AGGREGATES LTI	O.	ELEVATION 201.3 m ASL

	≱ [S	AM	PLE	<u> </u>						
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	ТҮРЕ	VALUE	WATER	REC	RQD			LUE	CON	TER TENT %)
	STR			ž	Ħ	F	z	×	×	×	15	30 4	5 60	10 20	30 40
1 -		INDUSTRIAL FILL Black heterogeneous mix of sand, clayey silt, and gravel with industrial debris throughout. compact to wet, loose to very dense.		1		ss	10	18.1						_	
2		NOTE: Split spoon sample intervals taken from borehole 31-I.		-						_					
3 -			********	2		SS	40	19.2		_				•	
5 -			********	3		SS	4 5	16.4		-		1	•	•	
6 -			***************************************	4		ss	10	32.5		-	=				A
7 -			***************************************	-						-					
		Borehole terminated at 7.69 m in fill. BOREHOLE AUGERED WITHOUT SAMPLING, STRATIGRAPHY INFERRED FROM 31-I AND AUGER CUTTINGS													
															mitad

BOREHOLE LOG	PROJECT: 88-197	BOREHOLE: 32-I 1 of 1
HYDROGEOLOGICAL INVESTIGAT	ION	DATE: 13 March 1989
TARO QUARRIES, STONEY CREEK		GEOLOGIST PW
FOR: TARO AGGREGATES LTD.		ELEVATION 202.9 m ASL

TOK.		RO AGGREGATES ETD.		_		_			<u></u>	LE				202		II A.	
	눞						S	AM	PLI	Ξ							
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	& NUMBE	NUMBER	INTERUAL	TYPE	UALUE	WATER	REC	1	RE		VER 6)	Y		QD %)
	S.				Z	Н	+	z	*	×	×	2	5 50	75 100	2	5 50	75 100
1 -		INDUSTRIAL FILL Black to dark brown heterogeneous mix of sand, clay, silt, and gravel with industrial debris. Moist to wet, loose to very dense.									-						
2 -											-						
3 -		NOTE: Soil sample details and locations shown on borehole log 32-II.									-						
4											-						
5 —					-						_						
6											-						
7 -																	
8 -				-													
9		-Mottled greenish-grey brown silty clay was found above the bedrock interface.		-													
10.0 10.3 10 -	***	VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thin bedded		_	1		нQ			100	15				•		
10.9 11		shale. Numerous dolostone beds, very broken up to about 10.9 m. -Dolostone bed from about 10.3 to 10.9 m.		-													
12			*************		2		НQ			100	83						
13.0	=	Borehole terminated at 13.00 m in shale.	#		_												

1 of 1 PROJECT: 88-197 **BOREHOLE:** 32-II **BOREHOLE LOG** HYDROGEOLOGICAL INVESTIGATION 13 March 1989 DATE: **GEOLOGIST** PW TARO QUARRIES, STONEY CREEK ELEVATION 202.9 m ASL | FOR: TARO AGGREGATES LTD.

FOR:	AN	O AGGREGATES LTD.										1011 202.	, III 1102
	≻⊺			T			SA	MP	LE				
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	STARTS IN	TATEBUSE	TYDE	1	Т	צין ו	% REC	% RQD	N VALUE	WATER CONTENT (%) 10 20 30 40
1 - 3 - 3 - 4 5 6 7 - 8		INDUSTRIAL FILL Black to dark brown heterogeneous mix of sand, clay, silt, and gravel with industrial debris. moist to wet, loose to very dense. NOTE: Split spoon sample interval taken from borehole 32-II.				S	S	29 8 11 3 13 0 11	3.5		-		A
9.1 9 -		Borehole terminated at 9.14 m in fill. BOREHOLE AUGERED WITHOUT SAMPLING, STRATIGRAPHY INFERRED FROM 32-I AND AUGER CUTTINGS		班 -									

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 33-I 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 6 March 1989TARO QUARRIES, STONEY CREEKGEOLOGIST PWFOR: TARO AGGREGATES LTD.ELEVATION 203.3 m ASL

FOR:	TARO AGGREGATES LTD.							LLE	V A	TION	203.3	m A	2r
	\(\frac{1}{4}\)	n n			S	AM	PLI	E					
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	א תמס	(VERY %) 75 100	(0	QD %) 75 100
	industrial fill		F	\mathbb{H}	•		-	-	<u> </u>	25 50	75 100	25 50	75 100
1 -	Dark brown to black heterogeneous mix of sand, clay, silt, and gravel with industrial debris. Moist to wet, loose to dense.								-				
2 -													
3 -	NOTE: Soil sample details and locations shown on borehole log 33-II.								-				
4 -			-						-				
5 –			-						-				
6			-										
7 -			-										
8 -			•										
9			-										
10 -	-Brown silty clay till encountered at bedrock interface with rock and slag fragments. VINEMOUNT SHALE		-						1				
11.3	Dark grey, aphanitic to fine crystalline, thin to medium bedded shale. Occasional dolostone layers, trace fossils.		•						1				
12			1		HQ HQ			100	0 52				
13			•										
14.1 14	Borehole terminated at 14.14 m in shale.												
											· · · · · · · · · · · · · · · · · · ·		

BOREHOLE LOGPROJECT:88-197BOREHOLE:33-II1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:6 March 1989GEOLOGISTPWFOR:TARO AGGREGATES LTD.

	>					-	ΔΜ	PLE						T			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	түрЕ	UALUE	WATER	REC	RQD			LU:		CON	(%)	NT
	15			ž	Ħ	F	z	×	×	*	i	5 30	45 6	0	10 2	0 30	40
		INDUSTRIAL FILL Dark brown to black heterogeneous mix of sand, clay, silt, and gravel with industrial debris. Moist to wet,															
1 -		loose to dense.		1		ss	26	14.6		-		=	-		A		
2 -		NOTE: Split spoon sample intervals taken from borehole 33-I.								-							
3 -				2		SS	9	27.3		-	=					A	
4 -				3		ss	40	9.7		•					A		
5 -				-	翻					-							
6 -			***	4		ss	13	12.4		-					•		
7 -			***	5	5	ss	16	14.0							•		
8 -			***************************************	-													
9 -			******	•	5	ss	14	18.7			•					A	
10 -	₩		1 #							-	1						
10.4	***	Borehole terminated at 10.44 m in fill. BOREHOLE AUGERED WITHOUT SAMPLING, STRATIGRAPHY INFERRED FROM 33-I AND AUGER CUTTINGS	接続を登録														

Printed: 1 OCT 93

BOREHOLE LOGPROJECT:88-197BOREHOLE:34-I1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:2 March 1989TARO QUARRIES, STONEY CREEKGEOLOGISTPWFOR:TARO AGGREGATES LTD.ELEVATION186.2 m ASL

		, · · ·														′	131	
		ІВВАРНУ		2 0 0	╬	_		SAM	1PL	E	Т							
DEPT	н	GRA	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS NUMBER		PA		Щ	2			RE	CO	VER	Y	1	RQD	l
(m)		.TA		NO NO N	NUMBER	INTERUA	'n	VALUE	WATER	REC	P. C.			6)			(%)	
		STRAT			Ž	Z	TYPE	z		X	1	_		75 10	+	-	0 75 1	100
			SANDY CLAYEY SILT TILL		1		SS	4	24.2	2	 	ĦĨ	T	11	+	Ť		
			Light brown sandy clayey silt till, trace gravel, moist to wet, loose to dense. Trace of topsoil surface.			鑩												
1	1		GRAIN SIZE DISTIBUTION		2		ss	20	11.5	5		11						
			Silt 41.1%															
] _	. !	#	Clay 30.0%		3	HERONEHI .	SS	42	13.7	1								
2.4	٠]		Sand 25.4% Gravel 3.5%		Ì					İ		1		11		1		
			GOAT ISLAND DOLOSTONE	1	1	0	НQ			100	21			🛉	1	4		
3	3	4	Medium grey, fine crystalline, thin to medium bedded		:1	AX.												
ĺ	-	\exists	dolostone. Layers of brown dolostone throughout, few		2		НQ			100	93				١			
l ,	, [vugs with some having gypsum infilling, occasional clay seams and shale stringers.			N									ļ			
"	']	4	•		ľ							1			1			
	-			#	3		HQ			100	76							
5	; - 		-Calcite and gypsum infilled vugs and fractures	#	L	M	•			100	_							
5.6			present towards bottom of unit.	.														
6		4	ANCASTER CHERT BED	*******************											Ì			
	' [A	Medium grey, fine crystalline, thin to medium bedded dolostone. Numerous chert nodules, some shale	#	4		НQ			100	68			1			A	
			stringers and calcium and gypsum filled vugs.	#		M												11
7.4	' [-Chert noduals were vuggy with well formed calcite	#	ŀ	M					-	·						
	f		crystals within. Borehole terminated at 7.36 m in cherty dolostone.			N						┝┼	+	+	+	+		Н
		ļ	Botenote terminated at 7.30 m in cherty dolostone.															
	-	l				Ш												
															l			
	-																	
	l						İ											
		İ																
									Į.									
				İ														
		-						l										
						١					İ				Ì			
				j											1			
									ĺ									
_			· · · · · · · · · · · · · · · · · · ·			\perp									1			

BOREHOLE LOG	PROJECT:	97-557 TARO	BOREHOLE: 34-I	I 1 of 1
HYDROGEOLOGICAL INVESTIGATIONS Stoney Creek, Ontario FOR: TARO AGGREGATES LTD.			DATE: 15 Decemb GEOLOGIST YS ELEVATION 186	

	숲		\neg			SA	M	PLE				
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	& NUMBER	NUMBER	INTERUAL		N VALUE	% WATER	% REC	% RQD	N VALUE	WATER CONTENT (%)
0.6		FILL Brown sandy, clayey silt fill with trace gravel, moist.			T	\dagger					13 30 43 60	10 20 30 40
1 -		SANDY CLAYEY SILT TILL Light brown sandy clayey silt till, trace gravel, moist to wet, loose to dense.	-			and the second s						
3.0										-		
3 -		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, thin to medium bedded dolostone. Layers of brown dolostone throughout, few										
5 -		vugs with some having gypsum infilling, occasional clay seams and shale stringers. -Calcite and gypsum infilled vugs and fractures								-		
6.2 6 -		Present towards bottom of unit. ANCASTER CHERT BED								_		
7 -		Medium grey, fine crystalline, thin to medium bedded siliceous dolostone. Numerous chert nodules, some shale stringers and calcium and gypsum filled vugs.										
8 -		Trace shale stringer at about 8 m.		1	H	2			100	82_		
9.3 9 -		Borehole terminated at 9.27 m in siliceous dolostone. NOTE: Original borehole 34-I monitor overdrilled and removed. Borehole deepened for this installation.	} ;;;			-						
		Borehole stratigraphy to 7.9 m taken from borehole 34-I.										
					-							
			-									
	1 1		- 1	- 1	1	1	1	- 1				

BOREHOLE LOG	PROJECT:	97-557 TARO	BOREHOLE: 34-III 1 of 1
HYDROGEOLOGICAL INVESTIGATIONS			DATE: 15 December 1997
Stoney Creek, Ontario			GEOLOGIST YS
FOR: TARO AGGREGATES LTD.			ELEVATION 186.78 m ASL

			T		1436	DY E	,			
DEPTH (m)	STRATIGRAPHIC DESCRIPT	MON MONTH	NUMBER	TYPE	NALUE	WATER	REC	RQD	N VALUE	WATER CONTENT (%)
			z	4 6	z	%	%	Х	15 30 45 60	10 20 30 40
0.6	FILL Light brown sandy, clayey silt fill with trace gr	avel,								
1 -2	SANDY CLAYEY SILT TILL Light brown sandy clayey silt till, trace gravel,	moist	_					-		
2 -	to wet, loose to dense.		-					_		
3.0			1	НО			95	53		
	GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, thin to medium l dolostone. Layers of brown dolostone througho	bedded	2	HQ			100	72		
4 7	vugs with some having gypsum infilling, occasi clay seams and shale stringers.	onal	-					-		
5 -	-Calcite and gypsum infilled vugs and fractures present towards bottom of unit.		3	HQ			100	92		
6.1 6	process contains of time.							_		
	Borehole terminated at 6.12 m in siliceous dolo NOTE: Borehole stratigraphy inferred from adborehole 34-I. Borehole logged to confirm con and for monitor placement.	jacent	-							
L	24 MAD 00									

BOREHOLE LOG	PROJECT: 88-197	BOREHOLE: 35-I 1 of 2
HYDROGEOLOGICAL INVESTIGA	TION	DATE: 21 February 1989
TARO QUARRIES, STONEY CREE	K	GEOLOGIST TLC
FOR: TARO AGGREGATES LTD.		ELEVATION 200.4 m ASL

T	T					7 4 2 4	D	•							
	STRATIGRAPHY		۳. ق			SAM	rLt	<u>'</u>							
	A I	CONTRACTOR ADVICE PROCEEDINGS	MONITOR DETAILS & NUMBER		#	l w	œ			DEC	OVI	. D. J		RQI	`
DEPTH	IG	STRATIGRAPHIC DESCRIPTION	HE D	2	2	VALUE	WATER	ان	۵			KI			
(m)	ΑT		5 H 3	NUMBER	TYPE	5	E.	REC	RQD		(%)			(%)	
	Ĭ.			₽	4 }	z	×	%	×	25	50 75	100	25	50 75	100
	Security (TOPSOIL		1	SS	8					П	\Box			
0.5		Dark brown sandy silt, rootlets, firm, frozen.	Total Maria												
	+I	SANDY SILT TILL		2	ss	25									
1 1	+1	Medium brown sandy silt till with clay, trace gravel,				1									
1.7		dense to very dense, moist.			ss	50						\perp			
		GRAIN SIZE DISTIBUTION Silt 47.1%		1		0.08r	l .	100	0			T 1			
2		Sand 28.8%			N 4	, ,	Ï					1			
		Clay 21.4%			N			100	0			# 4			
3 -	\Box	Gravel 2.7%		2	НО			100	٠.						
		ERAMOSA DOLOSTONE			Ŋ										
		Medium brownish-grey, fine crystalline, thin to			M										
]		medium bedded dolostone. Vuggy, numerous shale			N		1		-			_			
	$\vdash \vdash \vdash$	stringers and gypsum infilled fractures and vugs.		3	∦но	2		91	60						
		Trace fossils with some small fossiliferous zones			W										İ
5 -		observedWeathered to about 4.0 m.		- 1	M				-						
		- Weathered to about 4.0 m.			N										
					М И			93	72			╡ !		4	
, 6				}]	Ŋ	١.		30	٠.						
					W W		1								
					W										
7 -				-					-						
7.7				5	нс	2		100	80						
'		VINEMOUNT SHALE	1												
8 -		Dark grey, aphanitic to fine crystalline, medium		-	M				-	1					
	吕	bedded shale. Numerous clay seams, trace fossils.			N .										
8.8	ᆿ			6	НС	2		100	72			#		1	
9.3		-Dolostone bed from about 8.8 to 9.3 m, locally		-	Ñ			1	•	1					
		minor shale content.			N										
					N										-
10 -	드크			7	M mc			91	89						A
	闫			'	НС	•		"							
11 -	[==]				N					1					
'']	[크				N										
	日	-Dolomitic content within shale increases towards													
12 -	ဌ	bottom of unit.		8	Мно	5		98	81	4		T			
	ᆵ				N										
12.6	目		- []		N										
13 -	\vdash	GOAT ISLAND DOLOSTONE		1						1		İ		1	
"		Medium grey, fine crystalline, thin to thick bedded		9	Мно	اد		100	93	1 1		•			A
13.8		dolostone. Vuggy, numerous shale stringers and gypsum infilling.			но	٦			•					1	
14 -	[=]	SHALE		1	N					1					
14.4	E	Dark brownish grey, medium bedded shale,			Ñ				l						
		interlaminated with dolostone, bioturbation at upper													A
L	1	007.93	l ····································		W		ــــــــــــــــــــــــــــــــــــــ	1 P			ner			•	<u> </u>

BOREHOLE LOGPROJECT:88-197BOREHOLE:35-I2 of 2HYDROGEOLOGICAL INVESTIGATIONDATE:21 February 1989TARO QUARRIES, STONEY CREEKGEOLOGISTTLCFOR:TARO AGGREGATES LTD.ELEVATION200.4 m ASL

	<u></u>		T	T		S	ΔΜ	PLI	ਜ ਜ		Ī			Т			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	% RQD		(%	VEF 6) 75 10	_		RQD (%)	
16 -		GOAT ISLAND DOLOSTONE(continued)	77.7	_	H				100	-							•
17 - 17.8		Borehole terminated at 17.83 m in dolostone.		-						-							
		and an arrive in the dollower.															
	\perp																Ш

BOREHOLE LOGPROJECT: 88-197BOREHOLE: 35-II 1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE: 15 March 1989TARO QUARRIES, STONEY CREEKGEOLOGIST PWFOR: TARO AGGREGATES LTD.ELEVATION 200.4 m ASL

TOK.			r	_							1						
DEPTH	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	ER	INTERUAL		AM an a	WATER		٥	RE		VE	RY		RQ:	
(m)	RAT		Ω •4	NUMBER		TYPE			REC	RQD	<u>_</u>		6)			(%)
	ST		Septimizer september	Ž	П	_	Z	×	×	*	2	5 50	75 1	00	25	50 7	5 100
0.5		TOPSOIL Dark brown sandy silt, rootlets, firm, frozen. SANDY SILT TILL Medium brown sandy silt till with clay, trace gravel,								-							
1.7	-1	dense to very dense, moist.															
2 -		ERAMOSA DOLOSTONE Medium brownish-grey, fine crystalline, thin to medium bedded dolostone. Vuggy, numerous shale stringers and gypsum infilled fractures and vugs.								-							
3 -		Trace fossils with some small fossiliferous zones observed.								•							
4 -		-Weathered to about 4.0 m.		-													
5 -				_						-							
6 -										-							
7.7										-							
8 -		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, medium															
8.8		bedded shale. Numerous clay seams, trace fossils.	#														
9.3		-Dolostone bed from about 8.8 to 9.3 m, locally minor shale content.	*************							-							
10 -			********	-						-							
11.3 11				_											4		
		Borehole terminated at 11.29 m in shale. BOREHOLE DRILLED DIRECTLY BY AIRTRACK, STRATIGRAPHY INFERRED FROM 35-I AND DRILL CUTTINGS															
1																	
									<u> </u>								

BOREHOLE LOG PROJECT: 92377

BOREHOLE: 35-III 1 of 2

HYDRAULIC CONTROL INVESTIGATION

TARO-WEST QUARRY

FOR: TARO AGGREGATES LTD.

BOREHOLE: 35-III 1 of 2

DATE: 29 September 1992

GEOLOGIST SMA

ELEVATION 200.4 m ASL

101.		NO AGGREGATES ETD.						LLE	VA.	110		200.4	+ 11			لـ
	ξ		~			SAM	PLI	E								٦
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	UALUE	WATER	REC	RQD		(%		ļ	RQ (%	(o)	
	S	SANDY SILT TILL	100000000000000000000000000000000000000	_		Z	*	χ,	*	25	50	75 100	2	5 50 7	75 100	4
1.5	*	Light brown sandy silt, some topsoil at surface, moist, loose to compact.		_ 2		23	13	50	_	_						
2 -		ERAMOSA DOLOSTONE Greyish brown to brownish grey, fine crystalline, thin bedded dolostone, locally weathered and porous to about 3.0 m, minor shale content locally.		3 - 1	SS HQ	>30	11	40 100	13				•			
3 -		-6 cm cavity with well formed calcite at about 3.1 m.		-												
5 ~				_ 2	нQ			100	65					•		
6 -				3	нQ			100	76			-				
7 - 7.6		-Transitional below about 7.2 m. VINEMOUNT SHALE														
8 - 8.8 9.3 9 -		Dark brownish grey, aphanitic to very fine crystalline, thin to medium bedded shale, locally interlaminated to thinly interbedded with dolostone, some fossils.									When					
10 -		-Grey dolostone from about 8.8 to 9.3 m, locally minor shale content.		4	НQ			100	92							
11																
12 - 12.7		-Transitional below about 12.4 m. GOAT ISLAND DOLOSTONE		5	НQ			100	100							
13.8		Brownish grey, fine crystalline, thin to thick bedded dolostone, occasional shale stringers, minor shale content locally. 1-1 cm well formed gypsum seam at about 13.3 m.	-	6	НQ			100	97							
14.4		SHALE Dark brownish grey, medium bedded shale,						100	31							

BOREHOLE LOGPROJECT:92377BOREHOLE:35-III2 of 2HYDRAULIC CONTROL INVESTIGATIONDATE:29 September 1992TARO-WEST QUARRYGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION200.4 m ASL

FOR.		NO AGGREGATES ETD.			_	=		<u></u>									
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE W	% WATER LI	% REC	% RQD			%)	RY	25	RQ (%	
16 - 17 -		interlaminated with dolostone, bioturbation at upper contact. GOAT ISLAND DOLOSTONE (continued) -Occasional gypsum seams and nodules observed from about 14.4 to 15.8 m. -Fractured zone from about 15.5 to 15.6 m.		7		НQ			100	97							4
18 -		-Minor occurrence of chert nodules with sphalerite mineralization below about 19.2 m.		-		НQ				-							
20.5		ANCASTER CHERT BEDS	-	l	M				100	97							
21 -		Brownish grey to grey, very fine crystalline, thin to thick bedded siliceous dolostone with numerous chert nodules and layers.		9		НQ			100	97-							
22 -				- 9						-							
24				10		нQ			100	100							
24.7		Borehole terminated at 24.65 in siliceous dolostone.			NI												
1																	
		0.050.03		<u> </u>				<u> </u>			Ļ	\sqcup			_		nited

Printed: 29 SEP 93

BOREHOLE LOGPROJECT:92377BOREHOLE:35-IV1 of 2HYDRAULIC CONTROL INVESTIGATIONTARO-WEST QUARRYGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION200.4 m ASL

TOK.		RO AGGREGATES LTD.							.1.1	Τ Λ.	IOI		.00.4	m A	ISL
	ΗY		_			S	AM	PLI	Ξ						
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	א תמם		COV (%)			RQD (%)
	I.F	SANDY SILT TILL			$\dagger \dagger$						T		- 1	7	100
1 -	* † † † † † † † † † † † † † † † † † † †	Light brown sandy silt, some topsoil at surface, moist, loose to compact.								-					
2 -		ERAMOSA DOLOSTONE Greyish brown to brownish grey, fine crystalline, thin bedded dolostone, locally weathered and porous to about 3.0 m, minor shale content locally.		-						-					
3 -		-6 cm cavity with well formed calcite at about 3.1 m.		-											
4 -				-											
5 -				-											
7 -															
7.6		-Transitional below about 7.2 m.													
8.8 9.3 9		VINEMOUNT SHALE Dark brownish grey, aphanitic to very fine crystalline, thin to medium bedded shale, locally interlaminated to thinly interbedded with dolostone, some fossils. -Grey dolostone from about 8.8 to 9.3 m, locally minor shale content.													
11 -										1					
12.7	3	-Transitional below about 12.4 m. GOAT ISLAND DOLOSTONE													
13.8		Brownish grey, fine crystalline, thin to thick bedded dolostone, occasional shale stringers, minor shale content locally.													
		SHALE Borehole terminated at 14.12 m in shale.													

BOREHOLE LOGPROJECT: 92377BOREHOLE: 35-IV 2 of 2HYDRAULIC CONTROL INVESTIGATIONDATE: 30 September 1992TARO-WEST QUARRYGEOLOGIST SMAFOR: TARO AGGREGATES LTD.ELEVATION 200.4 m ASL

TOR.		NO NOOKE STATE STATE				 AM	PLE			Γ				Т			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	N VALUE	% WATER	% REC	% RQD		(%)	ER'		(QI %)	
	O	NOTE: Stratigraphy inferred from adjacent borehole 35-III. Borehole cored directly to 14.12 m, logged to confirm contacts and for monitor placement.															

Printed: 29 SEP 93

BOREHOLE LOGPROJECT:92377BOREHOLE:35-V1 of 1HYDRAULIC CONTROL INVESTIGATIONDATE:29 September 1992TARO-WEST QUARRYGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION200.4 m ASL

		NO NOOKEONTES ETD.			_						110		201	<i></i>	шА		
	PHY	-	0	<u>.</u>		S	AM	PL	E	·				T			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	% RQD	RE0	(%		\downarrow	(QD %)	0
1 - 1.5 2 - 3 - 4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		SANDY SILT TILL Light brown sandy silt, some topsoil at surface, moist, loose to compact. ERAMOSA DOLOSTONE Greyish brown to brownish grey, fine crystalline, thin bedded dolostone, locally weathered and porous to about 3.0 m, minor shale content locally. -6 cm cavity with well formed calcite at about 3.1 m. Borehole terminated at 6.77 m in dolostone. NOTE: Stratigraphy inferred from adjacent borehole 35-III. Borehole cored directly to 6.77 m, logged to confirm contacts and for monitor placement.															

BOREHOLE LOG	PROJECT: TARO	BOREHOLE: 35-VI 1 of	f 2
HYDROGEOLOGICAL INVESTIGAT	TON	DATE: 13 January 1994	
TARO QUARRIES - STONEY CREE	K	GEOLOGIST SMA/TLC	
FOR: TARO AGGREGATES LTD.		ELEVATION 200.4 m ASL	,

FOR:	IAI	RO AGGREGATES LTD.			_				LE								
	ቷ					S	AM	PLI	3								
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	א הפס		(%	VER			QE %)	
	5455 194 1980	TOPSOIL			П								T				
0.5		Dark brown sandy silt, rootlets, firm.			Ш								11				
1.7		SANDY SILT TILL Medium brown sandy silt with clay, trace gravel, dense to very dense, moist.								_							
1		ERAMOSA DOLOSTONE	dan ka							_							
2		Medium brownish-grey, fine crystalline, thin to medium bedded dolostone. Vuggy, numerous shale stringers and gypsum infilled fractures and vugs.															
3		Trace fossils with some small fossiliferous zones observed.												:			
4		-Weathered to about 4.0 m.								-							
5 -										-							
6								5		-							
7				_						-							
7.7		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, medium								-							
8.8		bedded shale. Numerous clay seams, trace fossils.												-			
9.3		-Dolostone bed from about 8.8 to 9.3 m, locally minor shale content.								-							
10 -				_						_							
11		-Dolomitic content within shale increases towards bottom of unit.								•							
12.6																	
13		GOAT ISLAND DOLOSTONE Medium grey, fine crystalline, thin to thick bedded dolostone. Vuggy, numerous shale stringers and		}													
13.8		gypsum infilling.	Suit, Brief														
14 14.4		SHALE Dark brownish grey, medium bedded shale, interlaminated with dolostone, bioturbation at upper															
	<u> </u>	Contact.		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>	***	or I		 		 tod

BOREHOLE LOG	PROJECT: TARO	BOREHOLE: 35-VI 2 of 2
HYDROGEOLOGICAL INVESTIGAT	ION	DATE: 13 January 1994
TARO QUARRIES - STONEY CREE	K	GEOLOGIST SMA/TLC
FOR: TARO AGGREGATES LTD.		ELEVATION 200.4 m ASL

TOK.	IA.	NO AGGREGATES LTD.			_	·			LLE	V A	110	<i>)</i> [1		00.4	III	ASI	L	┙
	È		_			S	AM	(PL)	E		Π							٦
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	% RQD		ECC (°	%)			RQ (% 50 7		
(m) 16 - 17 - 17.8	STRAT:	Borehole terminated at 17.83 m in dolostone. NOTE: Monitor 35-I overdrilled in January, 1994. The bottom of the borehole was sealed and a new monitor was installed in borehole.	NON THE PROPERTY OF THE PROPER	Z .			2	×	×	×		5 50	75]			50 7	5 100	

BOREHOLE LOG PROJECT: TARO BOREHOLE: 35-VII 1 of 1

HYDROGEOLOGICAL INVESTIGATION
TARO QUARRIES - STONEY CREEK
FOR: TARO AGGREGATES LTD.

BOREHOLE: 35-VII 1 of 1

DATE: 18 January 1994

GEOLOGIST SMA
ELEVATION 200.4 m ASL

	<u></u>		~			S	AM	PLF	<u> </u>							
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERVAL	ТҮРЕ	N VALUE	% WATER	% REC	% RQD	(%)	ERY		QD %) 75 1	00
0.5	669744 108854	TOPSOIL Dark brown sandy silt, rootlets, firm.														
1 - 1.7 2 - 3 - 5 - 7.7		SANDY SILT TILL Medium brown sandy silt with clay, trace gravel, dense to very dense, moist. ERAMOSA DOLOSTONE Medium brownish-grey, fine crystalline, thin to medium bedded dolostone. Vuggy, numerous shale stringers and gypsum infilled fractures and vugs. Trace fossils with some small fossiliferous zones observed. -Weathered to about 4.0 m.								-						
8 · 8.8 9.3		Dark grey, aphanitic to fine crystalline, medium bedded shale. Numerous clay seams, trace fossils. -Dolostone bed from about 8.8 to 9.3 m, locally minor shale content.	***************************************	_						_						
10 -		·		-						_						
		Borehole terminated at 11.29 m in shale. NOTE: Borehole 35-II was overdrilled January, 1994. The bottom of the borehole was sealed and a new monitor was installed in borehole.														

BOREHOLE LOGPROJECT:88-197BOREHOLE:36-11 of 2HYDROGEOLOGICAL INVESTIGATIONTARO QUARRIES, STONEY CREEKGEOLOGISTTLCFOR:TARO AGGREGATES LTD.ELEVATION205.8 m ASL

	≥		1			SAM	PLI	F	-						\exists
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	UALUE	WATER	REC	RQD	REC	COV (%)	ERY		RQD (%)	
	STF			⊋	₹ }	z	×	×	×	25	50 75	5 1 0 0	25	50 75 100	\exists
1 -		SANDY SILT FILL Light to medium greyish-brown sandy silt fill, some clay, compact, moist.	The state of the s	1 2 3	SS SS										
2.1 2				┞╏					-						
3 -		CLAYEY SILT Light brownish-grey clayey silt, some sand, dense to very dense, moist. -Root channels with trace laminations to about 2.7 m, becoming laminated silt and clay (1-3 mm thick)		- 5	ss ss	23			1						
4 -		with depth. GRAIN SIZE DISTRIBUTION		6		50 0.08n	ı	42	27	•			 		
4.7		Silt 51.6% Clay 38.0% Sand 10.4%													
		-Boulder encountered at about 4.1 m.		2	HQ			78	22				4		
6 -		ERAMOSA DOLOSTONE Medium brownish-grey, fine crystalline, thick bedded dolostone. Numerous shale stringers and vugs,		-	НQ			100	65						
7 -		slightly porousWeathered to about 6.0 m.						100	-						
8 -				4	нQ			100	67					A	
9 -				5	нQ			100	90			-			
10 -				-											
11		-Becomes vuggy below about 10.4 m, with numerous gypsum infilled fractures and vugs. Calcite present.		6	НQ			87	76				i.		
12 -		-Becomes less porous below about 12.0 m.		7	НQ			100	88						
13				8	НQ			100	90			-			
14.1 14		VINEMOUNT SHALE Dark grey, aphanitic to fine crystalline, thick to							4						
	\equiv	massive bedded shale. Occasional dolostone layers,													

BOREHOLE LOG	PROJECT: 88-197	BOREHOLE: 36-I 2 of 2
HYDROGEOLOGICAL INVESTIGA	ATION	DATE: 23 February 1989
TARO QUARRIES, STONEY CREE	EK	GEOLOGIST TLC
FOR: TARO AGGREGATES LTD		ELEVATION 205.8 m ASL

	上			<u> </u>		_	S	AM	PLE									
	STRATIGRAPHY		MONITOR DETAILS		k	=		<u>_</u>	œ			DI)V	ERY		RÇ	D O
DEPTH	TIG	STRATIGRAPHIC DESCRIPTION	INI		NUMBER	2		VALUE	WATER	REC	RQD	ייינו ו		у %)			(%	
(m)	RA.		ΣË	4	NUMBER		TYPE	o z	× E	× ×	× ×	<u> </u>			100	<u></u>	_	75 100
15.2	5	trace fossils.			9	1	- 1	-	•	100	87	2	5 50	75	100	1	30	75 100
15.7		-Dolostone bed from about 15.2 to 15.7 m, locally																
ľ		moderate shale content.				N					-							
16	囯			15.5		A						'			1			
	国				10	I	ĮQ.			100	100				Ī			T
17	闫			-							-	1				ll		
	目					N												
	邑					Ĭ	JQ.										Ì	
18	13			M	11	N I	HQ			100	97	1						
		-Transitional below about 18.3 m.				N												
19	启			ŀ		Ň	İ					ł						
19.5					12	Ä.				100	100				•			1
		GOAT ISLAND DOLOSTONE			12	W .	19			100	100]						
20.5		Medium brownish-grey, fine crystalline, massive bedded dolostone. Numerous shale stringers, some				N												
20.5		gypsum infilling, trace vugs.	-			N	ı											
21.1 21	邑	SHALE		-	13	Ŋ,	HQ			100	95	1			•			4
		Dark brownish grey, medium bedded shale,			-	Ŋ.						l						
		interlaminated with dolostone, bioturbation at upper contact.	lŧ			M												
22				ſ														
					14		НQ			100	100				•			1
23	-			ŀ		M						1						
						M												
						M										1		
24.2 24	1	Borehole terminated at 24.18 m in dolostone.				17			1	\vdash	\vdash	十	+		1	十	\Box	+
	1	Dorenote verminasca at 21.20 m m dolottono.		١												1		
				-														
						$\ $						1						
ļ				İ								İ						
																1		
						$\ $												
						$\ $												
				-														
•																		
1																		
										<u> </u>	<u> </u>							nitos

BOREHOLE LOGPROJECT:92377BOREHOLE:36-II1 of 3HYDRAULIC CONTROL INVESTIGATIONDATE:23 September 1992TARO-WEST QUARRYGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION205.9 m ASL

<u></u>		NO NOOREONTED BID.								IION	200.	7 III ASL
	¥		l n			SAM	PL	E				
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	TYPE	VALUE	WATER	REC	80	(OVERY %)	(%)
	S				1.		×	×	×	25 5	75 100	25 50 75 100
1		FILL Light to medium greyish brown sandy silt, some clay, compact, moist.		2		10	21	70	-			
2 -				3 4			18 20	50 50	-			
3		-Changing to a light brownish grey clayey silt, hard, DTPL, below about 2.9 m.		5	SS	27	18	45	-			
4.8				6			18	50				
5 -	*** - -	ERAMOSA DOLOSTONE Brownish grey, fine crystalline, thin to medium bedded dolostone, occasional shale stringers and thin		- 2	SS HQ	>30/ 0.08n	8 1	65 91	28_			
6		gypsum seams, locally porous, minor occurrences of vugs and sphalerite mineralization.		3	НQ HQ			100 99	50 74			
7		-Minor shale content locally below about 7.2 m.		-					_			
8 -				5	но			100	85			
9				6	нQ			100	71			
10 -				-								
11												
12				7	НQ			99	83			
13		-Becoming thinly interbedded with shale below about 13.3 m.										
14.3 14		-Transitional below about 13.8 m.							- 1			
	<u> </u>	VINEMOUNT SHALE Dark brownish grey, aphanitic to very fine										

BOREHOLE LOG PROJECT: 92377 BOREHOLE: 36-II 2 of 3

HYDRAULIC CONTROL INVESTIGATION

TARO-WEST QUARRY

FOR: TARO AGGREGATES LTD.

DATE: 23 September 1992

GEOLOGIST SMA

ELEVATION 205.9 m ASL

	È		ſΥ			SAI	MPL	E							
DEDELL	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER		=	u	, ב			DF	CO'	VERY		RQD	
DEPTH	TIG	STRATIGRAPHIC DESCRIPTION	NEN	3ER	ָ ער די	יו פֿן נו	WATER	REC	RQD	KE	(%			(%)	
(m)	RA		₹ 🖺 🥶	NUMBER	LALERVE	ַ בַּבְּיוֹ בְּיִבְּיִים בּבְיים בּבִיים	1		× ×	1		75 100	7		
15.2	.s	crystalline, thin to medium bedded shale,	Marian South		1	+	+	+~	-	2:	50	75 100	25	50 75 10	
15.7		interlaminated to locally interbedded with dolostone,		8	Н	٥		100	93					 	
	==	dolostone beds usually associated with bioturbation			Ŋ			200	-						
16 -		at lower contact and fossils at upper contact.								.					
	킄	-Grey dolostone from about 15.2 to 15.7 m, locally with moderate shale content.			N										
17 -	目			-					-						
	邑				N	}									
18 -					Ä			ļ	_						
		-Transitional below about 18.6 m.		9	н	٥		100	94					A	
19 -				-	N				-						
19.5					Ň										
		GOAT ISLAND DOLOSTONE			N										
20 -		Brownish grey, fine crystalline, thin to thick bedded dolostone, occasional gypsum seams, nodules and			N				-		į				
20.6		shale stringers to about 22.6 m, moderate shale					İ								
. 21.2 21		content,		-	Ň				-						
		ા-1 cm gypsum seam, slightly weathered, observed at ા n about 20.1 m.			N						ļ				
		SHALE		10	Н	Q		100	95			-		^	
22 -		Dark brownish grey, medium bedded shale,			Ñ				-						
		interlaminated with dolostone, bioturbation at upper			N										
23 -		contact.		-	N										
		-Fractured zone from about 20.9 to 22.1 mMinor shale content locally below about 22.6 m.			N										
					Ň										
24			WE.		N					1					
		-Siliceous patches below about 24.5 m.		11	M		į								
25 -				_11	₩н	Q		100	90			1 T			
					W										
					Ň										
26				-	N					1					
					W										
27				-	W					1					
					N										
27.7		ANCACTED CUEPT DEDC		12	M M	0		100	100					4	
28		ANCASTER CHERT BEDS Dark grey to grey, mottled beige, very fine		[Ø					1					
		crystalline, thin to thick bedded siliceous dolostone			Ň										
29		with numerous chert nodules and layers, minor			M					11					
27		occurrences of sphalerite mineralization usually associated with the chert.	‡		M										
	-	associated with the there.													
	<u> </u>		1::::4::::	1	.W			<u> </u>						imite	<u> </u>

BOREHOLE LOGPROJECT:92377BOREHOLE:36-II3 of 3HYDRAULIC CONTROL INVESTIGATIONDATE:23 September 1992TARO-WEST QUARRYGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION205.9 m ASL

		NO NOORDONIED BID.			_										111 /		
	НY		n			S	AM	PLI	Ε					T			
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	% RQD	RE	(%				RQ] (%))
	S	ANCASTER CHERT BEDS(continued)		┝		\dashv		<u>``</u>	<u>``</u>	<u>`</u>	25	50	75 10	0	25 8	50 7	5 100
31 -				- 13		НQ			100	100				1			
32.2 32 -				-						-							
33 -		GASPORT DOLOSTONE Blue grey to buff, coarse crystalline, thin to medium bedded dolostone, locally porous.		-						1							
33.8		-Increasing shale content below about 33.4 m.			200												
		Borehole terminated at 33.83 m in dolostone.												1			
						ŀ											
												ĺ					
						ļ :		1									
			i		Ц.,		<u> </u>								1	$\perp \perp$	

BOREHOLE LOGPROJECT:94-428BOREHOLE:36-III1 of 2HYDROGEOLOGICAL INVESTIGATIONDATE:25 September 1992GEOLOGISTSMAFOR:TARO AGGREGATES LTD.

	בו				_	S	AM	PLI	₹								
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	ТҮРЕ	UALUE	WATER	REC	ROD		('	VE %)			RQI (%)	
	ST		2200 co 200 (co)	Z	Н	_	z	*	*	-×	2	5 50	75 1	00	25	50 75	5 100
1 -		FILL Light to medium greyish brown sandy silt, some clay, compact, moist.		-						-							
3 -		-Changing to a light brownish grey clayey silt, hard, DTPL, below about 2.9 m.		-													
4.6																	
5 -		ERAMOSA DOLOSTONE		L							-						
, -	\vdash	Brownish grey, fine crystalline, thin to medium bedded dolostone, occasional shale stringers and thin															
-		gypsum seams, locally porous, minor occurrences of			П												
6 -		vugs and sphalerite mineralization.		ŀ							1						
											Ì						
7 -		-Minor shale content locally below about 7.0 m.		Ī					ļ		1						
		Millor shale consens todaily boton 22000 to															
8				ŀ							-						
9				ŀ							1						
				L						١.	1						
10 -																	
				0	İ												
11	+ 1			ŀ							1						
													l				
									1								
12						ļ									1		
13		-Becoming thinly interbedded with shale below about		ŀ							1						
		-Becoming thinly interbedded with shale below about 13.1 m.						1									
,,.		-Transitional below about 13.8 m.															
14.1 14		-Transitional below about 13.8 m. VINEMOUNT SHALE		ŀ							1						
		Dark brownish grey, aphanitic to very fine															
15.0	<u> </u>	crystalline, thin to medium bedded shale,							يــــــــــــــــــــــــــــــــــــــ				\perp				itad

BOREHOLE LOGPROJECT:94-428BOREHOLE:36-III2 of 2HYDROGEOLOGICAL INVESTIGATIONDATE:25 September 1992TARO QUARRIES - STONEY CREEKGEOLOGISTSMAFOR:TARO AGGREGATES LTD.ELEVATION205.7 m ASL

	¥		Ι ,			S	AM	PLI	Ξ		Γ				Τ				٦
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS	NUMBER	INTERUAL	TYPE	N VALUE	% WATER	% REC	. RQD	_	(%		1	1	RQ:)	
	S	interlaminated to locally interbedded with dolostone,		<u> </u>	П	_	 	<u> </u>	<u>``</u>	"	-2	25 5	0 7	5 100	+	25 5	0 7	5 100	
15.5		dolostone beds usually associated with bioturbation at lower contact and fossils at upper contact.			$\ $														
16		-Grey dolostone from about 15.0 to 15.5 m,	ista Ideory Sir	-						-									
17 -		locally with moderate shale content.		_						_									
18 -				-						-									
		-Transitional below about 18.4 m.																	
19.3 19		GOAT ISLAND DOLOSTONE								-									
20 -		Brownish grey, fine crystalline, thin to thick bedded dolostone, occasional gypsum seams, nodules and	1	-						_									
20.4		shale stringers to about 22.4 m, moderate shale content,			\prod								\dashv		-	-		\dashv	4
		-1 cm gypsum seam, slightly weathered, observed at about 19.9 m.																	
		SHALE Borehole terminated at 20.60 m in shale																	
		NOTE: Stratigraphy inferred from adjacent borehole 36-II. Borehole cored directly to 20.60 m, logged to																	ľ
		confirm contacts and for monitor placement. Due to elevation change caused by the slope of the berm	,																
		contacts are about 0.2 m higher.																	
																			ļ
	,																		
				<u> </u>															

Printed: 19 SEP 94

BOREHOLE LOG PROJECT: 94-428

HYDROGEOLOGICAL INVESTIGATION
TARO QUARRIES - STONEY CREEK
FOR: TARO AGGREGATES LTD.

BOREHOLE: 36-IV 1 of 1

DATE: 25 September 1992

GEOLOGIST SMA
ELEVATION 205.8 m ASL

PERTI	Ŧ						WATAN.	PLE			1					1
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERUAL	TYPE	N UALUE	% WATER	% REC	% RQD		(% 5 50	%)	25	RQ1 (%)	
1 -	S	FILL Light to medium greyish brown sandy silt, some clay, compact, moist.		-						-						
3 -		-Changing to a light brownish grey clayey silt, hard, DTPL, below about 2.9 m.		-						•						
4.8		ERAMOSA DOLOSTONE Brownish grey, fine crystalline, thin to medium bedded dolostone, occasional shale stringers and thin gypsum seams, locally porous, minor occurrences of vugs and sphalerite mineralization.		_						_						
7		-Minor shale content locally below about 7.2 m.		-												
9				_												
10 -													_			
		Borehole terminated at 10.95 m in dolostone. NOTE: Stratigraphy inferred from adjacent borehole 36-II. Borehole cored directly to 10.95 m, logged to confirm contacts and for monitor placement.														
																uited

Printed: 19 SEP 94

BOREHOLE LOG	PROJECT: 94-428	BOREHOLE: 36-V 1 of 2
HYDROGEOLOGICAL INVEST	IGATION	DATE: 18 October 1994
TARO QUARRIES - STONEY	CREEK	GEOLOGIST PW
FOR: TARO AGGREGATES I	LTD.	ELEVATION m ASL

	2H√		Dr			SAN	/PL	E			The state of the s		
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION	MONITOR DETAILS & NUMBER	NUMBER	INTERVAL	N UALUE		% REC	א תמם	(%	VERY		RQD (%)
1		FILL Light to medium greyish brown sandy silt, some clay, compact, moist.		-									
2 3 4 4.5		-Changing to a light brownish grey clayey silt, hard, DTPL, below about 2.9 m.	100 pt 10	- 1	H	Q		55	- 19			4	50
5 -		ERAMOSA DOLOSTONE Brownish grey, fine crystalline, thin to medium bedded dolostone, occasional shale stringers and thin		Catalogue	H			100				•	
6		gypsum seams, locally porous, minor occurrences of vugs and sphalerite mineralization.		- 2	H			100 100	+	*			A
7						P		200	-				
8				5	H	Q		100	81_		 		
9 -				6	H	Q		100	47				
10 -					H			100	78				
11 -				8	H	Q		100	82				
12 -		v.		9	H	Q		100	97			and the second s	
13 - 13.7		-Becoming thinly interbedded with shale below about 13.1 m.											
14 - 4.5		VINEMOUNT SHALE Dark brownish grey, aphanitic to very fine crystalline, thin to medium bedded shale,		. 10	н	5		98	83.				

BOREHOLE LOG	PROJECT: 94-428	BOREHOLE: 36-V 2 of 2
HYDROGEOLOGICAL INVESTIGAT	DATE: 18 October 1994	
TARO QUARRIES - STONEY CREE	GEOLOGIST PW	
FOR: TARO AGGREGATES LTD.	·	ELEVATION m ASL

SAMPLE STRATIGRAPHIC DESCRIPTION STRATIGUE DESCRIPTION STRATIGUE DESCRIPTION STRATIGUE DESCRIPTION STRATIGUE DESCRIPTION STRATIG	FOR:	IA	RO AGGREGATES LTD.						خازيار	· A.	ION		111	ASL	ᆜ
moderate shale content. Borehole terminated at 15.54 m in shale.		PHY		C (C III			SAMPLE								
moderate shale content. Borehole terminated at 15.54 m in shale.	DEPTH	IGRA	STRATIGRAPHIC DESCRIPTION	AIL	Œ	CAL	E H	ER		_	REC	OVERY		RQD	
moderate shale content. Borehole terminated at 15.54 m in shale.	(m)	RAT		M H N	JMBE		P.P.			S.					
Borehole terminated at 15.54 m in shale.	15.2				ž	F F	z	*	*	*	25 5	0 75 100	25	50 75 1	.00
					11	HC	2		89	69		2		1	Ш
			Borenole terminated at 15.54 m in shale.												
															,
													411		
										•					
			<u>.</u>												
															1
															١,,
			·												· P
															720
			4												.
															"
	~														-
			50 Mg												
					L		\perp						Ц	Щ	Ц.

BOREHOLE LOGPROJECT:92-372BOREHOLE:37-I1 of 1HYDROGEOLOGICAL INVESTIGATIONDATE:3 February 1992TARO QUARRIES - STONEY CREEKGEOLOGISTTLCFOR:TARO AGGREGATES LTD.ELEVATION192.8 m ASL

ELEVATION 192.8 III ASE															
	ξ		-	SAMPLE											
DEPTH (m)	STRATIGRAPHY	STRATIGRAPHIC DESCRIPTION		NUMBER	INTERUAL	1, 1	VALUE	WATER		٥	RECOVERY		_		
(111)	H.		MONITOR DETAILS & NUMBER	١Ĕ	Ħ	TYPE		3	REC	80		%)	(%)		
	ST			Ž	R	F	z	*	×	×	25 5	75 100	25 50 75		5 100
0.4		VINEMOUNT SHALE			П							\top	П		
		Dark brownish grey, aphanitic to very fine			П	ı									
1.2 1 -		crystalline, thin to medium bedded shale, locally laminated with dolostone.		1		НQ			92	52_					
		-Dolostone bed from about 0.4 to 1.2 m, moderate shale content locally.													
2 -	==			-						-					
				2	N	HQ			100	96		T			
_															
3 -				-						-					
				9	M	нQ			100	88					A
,		-Dolostone content increasing below about 3.8 m.		3	N	110			100	00					
"	==			-	N								İ		
4.0					M										
4.9 5 - -		GOAT ISLAND DOLOSTONE		_	W	İ	•								
		Brownish grey to grey, fine crystalline, thin to		4	Ň	нQ			100	100		🕈			†
		medium bedded dolostone, moderate shale content,			N										
6.1 6		occasional shale stringers and calcite nodules, gypsum													
	==	infilled seams locally, trace fossils.		5	M	НQ			100	97		📍			1
6.8	===	SHALE	-13		M	1			1						
7 -		Dark brownish grey, aphanitic to very fine / ncrystalline, thick bedded shale interlaminated with	13							\exists					
		'dolostone, bioturbation at upper contact.	1	6		HQ			96	87					A
8 -		-Becoming massive bedded below about 8 m.							30	"					
_															
9				7		нQ			100	97		•			4
10 -	\subseteq		#	-	N					Ⅎ					
			丰丨		N	ı	ı								
11			HHHHHH	8		но			100	100					1
11.4	-1		#		XI_					_	- - -	444	_	$\perp \perp$	
		Borehole terminated at 11.42 m in dolostone.				- 1				l					
İ	l														
	İ														
	ı														
				- 1											
j															
						İ									
<u></u> l										1					