Appendix E Geosynthetics Laboratory Test Results

Appendix E1 Geotextiles

Appendix E1.1 Type A Geotextile

ANALYSIS REPORT SCC Accreditation No.: 40‡

IDENTIFICATION:	Geotextile Type A: A-1 Project: Terrapure Stoney C Received: March 28, 2017;	Creek Landfil	l, Phase 8 B					-4 Roll 030	59365
STANDARD:									
ΓEST:	Mass per Unit Area of Geo	textiles			F	ASTM D5261	l - 10		
TEST CONDITIONS:	Conditioned sample(s) (21°	°C, 65% R.H);						
	10 test specimens of circula Surface used (cm²): 100 Tested March 30, 2017	ar shape per p	product;						
RESULTS:	The state of the s	Indi	vidual Data			Avg.	S.D.	% CV	
A-1 Roll 030593660									
Mass per unit area (g/m²):	371		411	375	390	375	25	6.7	
	381	355	339	350	365				
Mass per unit area (oz./yd.²)	16.0) 16.4	15.8	17.2	17.0	17.4	1.3	7.2	
, p	16.9	19.7	18.8	18.4	17.6	(7.1.1.0)	E 1.T.		
A-2 Roll 030593648									
Mass per unit area (g/m²):	374		353	365	418	361	23	6.5	
	329	356	367	345	351				
Mass per unit area (oz./yd.²)	16.9) 16.7	17.4	16.9	17.7	17.3	0.4	2.2	
	17.4		17.6	17.9	17.2	0.00			
A-3 Roll 030593665									
Mass per unit area (g/m²):	355	359	363	367	329	359	16	4.6	
.cov 1955(1) \$1	390	352	345	356	374				
Mass per unit area (oz./yd.²)	: 15.9	16.6	16.6	16.0	16.5	16.3	0.3	1.7	
	16.1	16.1	16.6	16.3	16.5				
Prepared by:	Desautela	Ap	proved by:	Sylvie Dal	pé o	0.0	_		

For any information concerning this report, please contact Eric Blond

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: May 25, 2017

Nancy Bésautels,

Technician

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

S078-087-95379A Report:

IDENTIFICATION:

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

TEST: Mass per U	Init Area of Geotex	tiles			ASTM D5261 - 10					
RESULTS (CONT):		Individual Data					S.D.	% CV		
A-4 Roll 030593654										
Mass per unit area (g/m²):	336	359	358	348	350	346	16	4.6		
	316	324	363	345	360	74		1997		
Mass per unit area (oz./yd.²):	16.9	16.4	16.1	16.3	16.8	17.0	0.6	3.7		
	17.5	16.9	18.0	17.5	17.6	17.0	0.0	3.7		

Prepared by:

Nancy Desautels

Approved by:

Nancy Bésautels, Technician

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

IDENTIFICATION:

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95379A Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

RESULTS:

TEST: Measuring the Nominal Thickness of Geosynthetics ASTM D5199-12

Avg.

S.D. % CV

TEST CONDITIONS:

Conditioned sample(s) (21 °C, 65 % R.H.);

Dimension of the test specimens: minimum diameter of 75 mm;

Apparatus: Frazier - measuring unit: inch (has precedence on the values in mm);

Procedure used: A

Diameter of the presser foot (mm): 57

Pressure applied (kPa): 2 Loading time interval: 5 sec.; Tested March 30, 2017

A-1 Roll 030593660									
Thickness (mils):	139	143	140	133	137	135	4	3.3	
	136	133	130	131	131				
Thickness (mm):	3.53	3.63	3.56	3.38	3.48	3.44	0.11	3.2	
v.	3.45	3.38	3.30	3.33	3.33				
A-2 Roll 030593648									
Thickness (mils):	130	133	130	128	143	129	6	4.5	
V*	122	123	129	128	127				
Thickness (mm):	3.30	3.38	3.30	3.25	3.63	3.28	0.15	4.5	
	3.10	3.12	3.28	3.25	3.23				

Individual Data

Prepared by:

Nancy Desautels Nancy Bésautels,

Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95379A

IDENTIFICATION: Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:									
TEST:	Measuring the Nominal Thic	kness of Ge	osynthetics			ASTM D519	9-12		
RESULTS (CONT):		Indi	vidual Data	i		Avg.	S.D.	% CV	
A-3 Roll 030593665									
Thickness (mils):	134	132	130	127	129	131	3	2.5	
	136	134	129	127	135				
Chickness (mm):	3.40	3.35	3.30	3.23	3.28	3.34	0.08	2.5	
(allay)	3.45	3.40	3.28	3.23	3.43		1		
A-4 Roll 030593654									
hickness (mils):	130	133	137	138	129	130	5	3.9	
	121	127	127	128	131				
hickness (mm):	3.30	3.38	3.48	3.51	3.28	3.31	0.13	3.9	
	3.07	3.23	3.23	3.25	3.33			V-1-5	

Prepared by:

Nancy Desautels Nancy Bésautels,

Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham Terrafix Geosynthetics	Inc.		Date: May 25, 2017 Report: S078-087-95379A								
IDENTIFICATION:	Geotextile Type A: A-1 Re Project: Terrapure Stoney Cr	Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030 Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System Received: March 28, 2017; PO#: CL1629GG006									
STANDARD:											
TEST:	Grab Breaking Load and Elo	ngation of	Geotextiles		111	ASTM D463	32/D4632	M-15a			
TEST CONDITIONS:	Apparatus used: Dynamomet Grip surface texture: rubber; Speed: 300 mm/min; Full scale range used: 5kN 10 test specimens per directi Conditioned sample(s) (21°C Tested March 30, 2017	on;		te of Exten	sion (CRE)	;		ı	E		
RESULTS:		Ind	ividual Dat	a		Avg.	S.D.	% CV			
A-1 Roll 030593660 MACHINE DIRECTION	·										
Grab Breaking Load (N):	1240.6 1265.8	1314.6 1456.7	942.7 1579.8	1180.8 1486.7	1099.3 1476.2	1 304.3	198.8	15.2			
Grab Breaking Load (lb):	278.9 284.6	295.5 327.5	211.9 355.1	265.5 334.2	247.1 331.9	293.2	44.7	15.2			
Elongation at break (%):	60.8 76.2	66.4 69.9	77.4 63.4	68.4 56.6	66.2 61.1	66.6	6.6	10.0			
CROSS DIRECTION											
Grab Breaking Load (N):	1269.2 1242.1	1224.0 1481.6	1196.8 1275.5	1416.2 1348.8	1384.1 1381.6	1 322.0	93.7	7.1			

Prepared by:

Grab Breaking Load (lb):

Elongation at break (%):

Catherine Groleau Rivard, Tech.

Technician

285.3

279.2

80.5

69.6

275.2

333.1

79.7

87.8

269.0

286.7

76.4

89,4

Approved by: Sylvie Palp

For: Eric Blond, Eng., M.Sc.A. Vice-President

311.1

310.6

74.1

80.0

297.2

79.7

21.1

5.9

7.1

318.4

303.2

78.0

81.6

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95379A

IDENTIFICATION: Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

	Received: March 28, 2017; P	O#: CL102	900000						
STANDARD:	750H2 SU - 8-28-11H2								
TEST:	Grab Breaking Load and Eloa	ngation of 0	Geotextiles	8	2011	ASTM D463	2/D4632	M-15a	
RESULTS (CONT):		Ind	ividual Dat	a		Avg.	S.D.	% CV	
A-2 Roll 030593648									
MACHINE DIRECTION	3.03								
Grab Breaking Load (N):	1409.7	1130.5	1122.4	1183.2	1247.5	1 289.0	111.8	8.7	
	1345.7	1311.9	1415.2	1332.0	1391.6				
Grab Breaking Load (lb):	316.9	254.1	252.3	266.0	280.4	289.7	25.1	8.7	
	302.5	294.9	318.1	299.4	312.8				
Elongation at break (%):	63.7	66.0	66.4	73.0	70.9	64.8	5.6	8.7	
	67.2	66.4	60.7	53.3	60.7				
CROSS DIRECTION	***								
Grab Breaking Load (N):	1340.4	1504.4	1424.6	1307.0	1444.2	1 409.1	66.7	4.7	
oruo Bromming Zoma (11) 1	1441.9	1483.3	1328.1	1384.1	1432.9	1 707.1	00.7	4.7	
Grab Breaking Load (lb):	301.3	338.2	320.3	293.8	324.7	316.8	15.0	4.7	
	324.1	333.4	298.6	311.1	322.1	210.0	15.0		
Elongation at break (%):	70.7	72.4	67.1	63.3	70.9	73.8	6.6	9.0	
	71.3	77.5	84.0	82.3	78.5				

Prepared by:

Catherine Groleau Rivard, Tech.
Technician

Approved by: Sylvie Palp

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95379A

IDENTIFICATION:

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Pagained: March 28, 2017: PO#: CL 1629GG006

	Received: March 28, 2017; P	O#: CL162	9GG006			- 1			
STANDARD:				===					
TEST:	Grab Breaking Load and Eloa	ngation of 0	Geotextiles	11		ASTM D463	2/D4632	M-15a	
RESULTS (CONT):		Ind	ividual Dat	a		Avg.	S.D.	% CV	
A-3 Roll 030593665						39			
MACHINE DIRECTION	•••								
Grab Breaking Load (N):	1464.1	1392.1	1240.6	1202.9	1074.6	1 244.5	128.3	10.3	
	1124.1	1176.8	1153.5	1230.7	1385.8				
Grab Breaking Load (lb):	329.1	312.9	278.9	270.4	241.6	279.8	28.8	10.3	
	252.7	264.6	259.3	276.7	311.5				
longation at break (%):	61.2	61.8	62.6	65.3	59.6	62.2	3.8	6.1	
	66.9	68.9	60.0	59.3	56.5				
CROSS DIRECTION	***								
Grab Breaking Load (N):	1493.6	1345.1	1616.9	1253.9	1113.1	1 360.8	148.8	10.9	
	1449.2	1374.7	1278.1	1224.3	1458.7				
Grab Breaking Load (lb):	335.8	302.4	363.5	281.9	250.2	305.9	33.5	10.9	
	325.8	309.0	287.3	275.2	327.9				
Elongation at break (%):	73.4	65.9	71.4	68.4	61.2	71.8	7.4	10.3	
	66.4	68.8	75.3	85.7	81.1				

Prepared by:

atherine Grolean Catherine Groleau Rivard, Tech.

Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

IDENTIFICATION:

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95379A

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:								П	
TEST:	Grab Breaking Load and Elon	ngation of	Geotextiles	ĝ III	2	ASTM D463	2/D4632	M-15a	
RESULTS (CONT):		Ind	ividual Dat	a		Avg.	S.D.	% CV	
A-4 Roll 030593654 MACHINE DIRECTION	300								
Grab Breaking Load (N):	1286.4 1236.9	1436.2 1164.9	1327.8 1240.2	1333.2 1288.2	1204.9 1228.8	1 274.8	77.7	6.1	
Grab Breaking Load (lb):	289.2 278.0	322.9 261.9	298.5 278.8	299.7 289.6	270.9 276.2	286.6	17.5	6.1	
Elongation at break (%):	63.7 71.3	68.8 71.7	67.8 67.6	72.4 75.8	65.8 72.0	69.7	3.6	5.2	
CROSS DIRECTION									
Grab Breaking Load (N):	1487.3 1400.3	1516.9 1280.2	1572.9 1270.6	1288.8 1358.6	1187.6 1360.9	1 372.4	122.7	8.9	
Grab Breaking Load (lb) :	334.3 314.8	341.0 287.8	353.6 285.6	289.7 305.4	267.0 305.9	308.5	27.6	8.9	
Elongation at break (%):	76.4 73.0	72.7 71.1	71.1 77.0	69.3 77.1	62.7 71.8	72,2	4.3	6.0	

Prepared by:

Catherine Groleau Rivard, Tech.

Technician

Approved by: Sylvie Palpé

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95379A

IDENTIFICATION:

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST:

Trapezoid Tearing Strength of Geotextiles

ASTM D4533/D4533M-15

TEST CONDITIONS:

Conditioned sample(s) (21°C, 65 % R.H.);

Apparatus used: Dynamometer with a Constant Rate of Extension (CRE);

Condition of the test specimens: dry;

Notch length: 15.9 mm;

10 test specimens per direction; Tested March 31 and April 03, 2017

RESULTS:		Indi	vidual Data	ı		Avg.	S.D.	% CV	
A-1 Roll 030593660 MACHINE DIRECTION									
Tearing Strength (N):	478.5 427.6	519.2 450.3	460.7 532.4	417.3 572.5	396.8 590.2	484.6	66.4	13.7	
Tearing Strength (lb):	107.6 96.1	116.7 101.2	103.6 119.7	93.8 128.7	89.2 132.7	108.9	14.9	13.7	
CROSS DIRECTION	***								
Tearing Strength (N):	478.0 618.0	545.7 520.1	533.3 573.3	529.1 531.1	533.1 524.7	538.6	36.5	6.8	
Tearing Strength (lb):	107.4 138.9	122.7 116.9	119.9 128.9	118.9 119.4	119.8 118.0	121.1	8.2	6.8	

Prepared by:

Technician

Approved by:

Date: May 25, 2017

Vice-President

For any information concerning this report, please contact Eric Blond

3 4	a .	~ 1
Mr	(ireio	Graham
T. 1 T. T.	OICIS	Orunum

Terrafix Geosynthetics Inc.

Date: May 25, 2017

S078-087-95379A Report:

IDENTIFICATION: Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:								1	
TEST:	Trapezoid Tearing Strength o	f Geotextil	es		,	M-15			
RESULTS (CONT):		Indi	ividual Data	a		Avg.	S.D.	% CV	
A-2 Roll 030593648									
MACHINE DIRECTION	m ·								
Tearing Strength (N):	480.7	540.5	436.7	480.7	452.9	495.9	41.7	8.4	
	468.0	477.5	519.6	547.5	554.8				
Tearing Strength (lb):	108.1	121.5	98.2	108.1	101.8	111.5	9.4	8.4	
	105.2	107.3	116.8	123.1	124.7				
CROSS DIRECTION									
Tearing Strength (N):	522.8	492.9	582.8	457.3	568.5	522,2	42.7	8.2	
88(-7-	545.2	468.6	491.7	540.1	552.1	322,2	74.7	0.2	
Tearing Strength (lb):	117.5	110.8	131.0	102.8	127.8	117.4	9.6	8.2	
	122.6	105.3	110.5	121.4	124.1				
A-3 Roll 030593665									
MACHINE DIRECTION	•••								
Tearing Strength (N):	563.4	445.4	498.8	447.5	437.8	473.2	48.7	10.3	
	419.4	438.8	444.5	539.4	497.2				
Tearing Strength (lb):	126.6	100.1	112.1	100.6	98.4	106.4	10.9	10.3	
	94.3	98.6	99.9	121.3	111.8				
CROSS DIRECTION	•					vavvensi silosa ni Brīta Talīta (Brīta	1000 000 00 00 00 00 00 00 00 00 00 00 0	www.comenter.com	
Tearing Strength (N):	525.1	509.5	494.1	513.6	498.1	480.2	46.0	9.6	
	513.6	488.6	456.4	415.3	387.4		9700		
Tearing Strength (lb):	118.0	114.5	111.1	115.5	112.0	108.0	10.3	9.6	
	115.5	109.8	102.6	93.4	87.1			S-All-All-All	

Prepared by:

Nora Boudjedaïmi, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95379A

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654 **IDENTIFICATION:**

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

	Received: March 28, 2017; P	O#: CL162	9GG006						
STANDARD:									
TEST:	Trapezoid Tearing Strength	Trapezoid Tearing Strength of Geotextiles						M-15	
RESULTS (CONT):		Indi	vidual Data	a		Avg.	S.D.	% CV	
A-4 Roll 030593654				ï					
MACHINE DIRECTION	92.5								
Tearing Strength (N):	526.4	438.7	482.9	470.8	425.4	461.6	41.5	9.0	
	414.1	485.4	497.9	479.3	394.7				
Tearing Strength (lb):	118.3	98.6	108.6	105.8	95.6	103.7	9.3	9.0	
	93.1	109.1	111.9	107.7	88.7				
CROSS DIRECTION									
Tearing Strength (N):	538.8	705.6	659.8	515.3	634.5	571.1	76.3	13.4	
. .	560.6	605.5	479.9	506.9	503.7				
Tearing Strength (lb):	121.1	158.6	148.3	115.8	142.6	128.4	17.2	13.4	
	126.0	136.1	107.9	113.9	113.2				

Prepared by:

Nora Boudjedaïmi, Technician

Approved by:

Vice-President

Date: May 25, 2017

For any information concerning this report, please contact Eric Blond

IDENTIFICATION:	Geotextile Type A: Project: Terrapure Sto Received: March 28, 2	oney Cre	ek Landfill	, Phase 8 I					-4 Roll 03059365		
STANDARD:											
ΓEST:	Related Products	Related Products						3 - 00	-		
TEST CONDITIONS:	Apparatus used: Dyna	onditioned sample(s) (21°C, 65 % R.H.); pparatus used: Dynamometer with a Constant Rate of Extension (CRE); lethod of holding the specimen as described in the test method; ested March 31, 2017									
RESULTS:			Indi	vidual Data	ì		Avg.	S.D.	% CV		
A-1 Roll 030593660											
Ouncture resistance (N):		900.8	765.0	779.5	765.1	875.4	812.7	67.1	8.3		
	152	783.0	746.9	724.4	769.6	792.3					
		850.4	867.8	758.2	959.0	852.5					
Puncture resistance (lb):		202.5	172.0	175.2	172.0	196.8	182.7	15.1	8.3		
		176.0	167.9	162.8	173.0	178.1			1845 1		
		191.2	195.1	170.5	215.6	191.6					
A-2 Roll 030593648											
Puncture resistance (N):		784.7	764.7	758.7	801.8	886.8	775.1	72.5	9.3		
		779.3	660.1	629.2	750.8	673.6					
		803.8	836.0	831.8	829.0	836.7					
uncture resistance (lb):		176.4	171.9	170.5	180.3	199.3	174.2	16.3	9.4		
		175.2	148.4	141.4	168.8	151.4					
		180.7	187.9	187.0	186.4	188.1					
A-3 Roll 030593665											
uncture resistance (N):		788.9	810.4	844.2	757.3	843.5	774.3	51.6	6.7		
	Š	851.1	677.7	709.9	783.4	772.9	1700 mg (170, 170, 170)		110000000		
		754.7	763.0	768.4	699.7	789.3					
uncture resistance (lb):		177.4	182.2	189.8	170.2	189.6	174.0	11.6	6.7		
		191.3	152.3	159.6	176.1	173.7	2	11.0	34,		
	~~~~~	169.6	171.5	172.7	157.3	177.4					
		01									
Prepared by:	RA		Ард	proved by:	Sylvie Dal	pé ()	12000				
Nora B	oudjedaïmi,			For	: Eric Blor	nd, Eng., M	I.Sc.A.	Date:	May 25, 2017		

**For any information concerning this report, please contact Eric Blond**

Vice-President

Technician



Mr Greig Graham

**IDENTIFICATION:** 

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95379A

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654 Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:									
TEST:	Index Puncture Resista Related Products	ance of	Geotextiles	s, Geomem	branes and		ASTM D4833	3 - 00	
RESULTS (CONT):			Indi	vidual Data	1		Avg.	S.D.	% CV
A-4 Roll 030593654									
Puncture resistance (N):	8	320.1	749.1	702.8	888.2	771.8	779.7	62.9	8.1
	7	789.7	869.7	815.8	830.4	795.5			
	7	727.4	691.5	734.5	821.1	688.0			
Puncture resistance (lb):	1	184.4	168.4	158.0	199.7	173.5	175.3	14.1	8.1
	1	177.5	195.5	183.4	186.7	178.8			
	1	163.5	155.4	165.1	184.6	154.7			

Prepared by:

Technician

Approved by:

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham						Date: Ma	y 25, 20	)17	
Terrafix Geosynthetics	Inc.				R	Report: SO	8-087-9	95379A	
IDENTIFICATION:	Geotextile Type A: A-1 Ro Project: Terrapure Stoney Cre Received: March 28, 2017; Po	ek Landfill	, Phase 8 E					-4 Roll 0:	30593654
STANDARD:	TO DESCRIPTION OF THE PARTY OF								
TEST:	Bursting Strength of Textile I Tester Method	Fabrics - Di	aphragm B	ursting Str	ength	ASTM D3780	5/D3786	M-13	
TEST CONDITIONS:	Conditioned sample(s) (21°C Apparatus used: Bursting Tes Measuring unit of the equipm Maximum capacity of the gau Tested March 30, 2017	ter (Muller ent: psi;	), Type "A	H"; Pumpi	ng rate: 170	ml/min;			
RESULTS:		Indi	vidual Data	a		Avg.	S.D.	% CV	
A-1 Roll 030593660									
Bursting Strength (psi):	498 517	492 530	442 530	517 498	492 505	502	26	5.1	
Bursting Strength (kPa):	3434 3565	3392 3651	3048 3651	3565 3434	3392 3479	3 461	175	5.1	
A-2 Roll 030593648									
Bursting Strength (psi):	480 463	455 395	467 476	518 481	444 527	471	37	7.9	
Bursting Strength (kPa):	3306 3192	3134 2724	3220 3279	3572 3316	3061 3630	3 243	255	7.9	
A-3 Roll 030593665									
Bursting Strength (psi):	526 439	526 501	551 519	514 439	464 552	503	42	8.3	
Bursting Strength (kPa):	3623 3027	3623 3451	3796 3579	3544 3027	3199 3803	3 467	288	8.3	

Prepared by:

Nancy Fontaine, Tech.
Technician

Approved by: Sylvie Palpe

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Date: May 25, 2017

Terrafix Geosynthetics Inc.

Report:

S078-087-95379A

**IDENTIFICATION:** 

Geotextile Type A: A-1 Roll 030593660, A-2 Roll 030593648, A-3 Roll 030593665, A-4 Roll 030593654

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:													
TEST:	Bursting Strength of Textile Tester Method	J/D3786	M-13										
RESULTS (CONT):		Indi	vidual Data	a	***	Avg. S.D. % CV							
A-4 Roll 030593654													
Bursting Strength (psi):	538	538	488	551	488	498	42	8.4					
	501	514	427	433	502								
Bursting Strength (kPa):	3710	3710	3365	3796	3365	3 432	289	8.4					
	3451	3544	2941	2982	3458								

Prepared by:

Nancy Fontaine, Technician

Approved by:

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham		Date: May 25, 2017
Terrafix Geosynthetics	Inc.	Report: S078-087-95379A
IDENTIFICATION:	Geotextile Type A: A-1 Roll 030593660	
	Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner a	and Leachate Collection System
	Received: March 28, 2017; PO#: CL1629GG006	•
STANDARD:		-
TEST:	Determining Apparent Opening Size of a Geotextile	ASTM D4751 - 16 Meth. A
TEST CONDITIONS:	Method A: Dry-Sieving with glass beads.	The state of the s
	Apparatus used: Sieve shaker ROTAP, model RX-29;	
	Beads size ranges used (mm): 0.106 and 0.150	
	Tested April 3 and 4, 2017	
RESULTS:	Individual Data	Avg. S.D. % CV
Weight of the specimen (g):	21.1 21.2 21.5 22.3	20.1

0.150

0.136

0.150

0.129

0.150

0.140

0.150

0.139

0.000

0.006

0.0

4.6

0.150

0.144

0.150

0.144

Prepared by:

AOS-A (mm):

Theoretical bead size (mm):

Suzie Côté, P.T. Technician Approved by: Sylvie Pa

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date:

May 25, 2017

Report:

S078-087-95379A

IDENTIFICATION:

Geotextile Type A: A-1 Roll 030593660

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST:

Water Permeability of Geotextiles by Permittivity

ASTM D4491/D4491M-15

TEST CONDITIONS:

Method A: Constant Head Test;

Temperature of the water (°C): 20.5

Flow diameter (mm) 54 Tested April 3, 2017

Tested April 3, 2	017							
RESULTS:		Indiv	vidual Data	l	Avg.	S.D.	% CV	
Thickness (mm):	3.25	3.63	3.78	3.56	 			
Permeability (E-01 cm/s):	3.8	4.3	3.7	3.5	3.8	0.3	8.9	
Permittivity (s-1):	1.2	1.2	0.97	0.98	 1.09	0.13	12.0	
Flow Rate under 51 mm hydraulic head (gal./min/ft²):	89.7	90.4	74.2	74.4	 82.2	9.1	11.1	
						Control and the Control and Control	The state of the s	

Prepared by:

Suzie Côté, P.T. Technician Approved by:

Sylvie Paipe

For: Eric Blond, Eng., M.Sc.A.

Date: May 25, 2017

Vice-President

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham <b>Ferrafix Geosynthetics</b>	Inc.											
IDENTIFICATION:		ype A: A-1 R	011 030593	3660			1					
		pure Stoney Cr			Base Liner	and Leacha	ate Collecti	on System				
		rch 28, 2017; P						•	light; 5 W/m²/nm @ 340  S.D. % CV  114.0 10.4  5.1 7.9  67.6 5.6  5.7 7.6  113.2 14.0  3.7 7.6			
STANDARD:									W			
TEST:		of Geotextiles		e to Light,	Moisture a	ınd	ASTM D	4355-14				
TEGT CONDITIONS	Heat in a Xenon Arc Type Apparatus  Mechanical test: Conditioning: 21°C, 65 % R.H.; Apparatus used: dynamometer (CRE); Speed: 305 mm/min;											
TEST CONDITIONS:	Mechanical te					ised: dynam posure (2" v		RE); Speed:	305 mm/m	ın;		
		MD: Mach					vidii),					
	Exposition: Ap	pparatus used:										
		position cycle:					water spra	y and light;				
	Temperature of the black pannel: $65 \pm 3^{\circ}$ C, $50 \pm 10\%$ R.H.; Irradiation: 0.35 W/m²/nm @ 340 nm; Inner Filter: borosilicate; Age at the beginning of the exposure (hours): 29											
		Outer Filter: borosilicate; Age at the beginning of the exposure (hours): 1029 Tested from April 27 to May 19, 2017 (UV exposure) and May 24, 2017 (Tensile tests)										
	Tested from A	pril 27 to May				ay 24, 2017	(Tensile te					
RESULTS:			Ind	ividual Dat	a		Av	g. S.D.	% CV			
AVERAGE RESIDUAL PR	ROPERTIES	•••										
After an exposure period of	500 h											
MD; Retained Strength (%)	):	74.0										
CD; Retained Strength (%)	:	65.0										
INDIVIDUALS RESULTS		***										
MD; Breaking Strength-Init	tial (N):	1036.1	1059.7	1272.1	1128.7	973.4	1 094.0	114.0	10.4			
MD; Elongation at break-In	itial (%):	59.0	60.9	64.8	68.0	71.6	64.9	5.1	7.9			
CD; Breaking Strength-Init	ial (N):	1132.5	1158.1	1298.5	1193.8	1249.1	1 206.4	67.6	5.6			
CD; Elongation at break-Ini	tial (%):	78.4	81.0	75.6	66.9	71.0	74.6	5.7	7.6			
MD; Breaking Strength-500	)h (N):	737.1	781.6	992.7	831.3	703.8	809.3	113.2	14.0			
MD; Elongation at break-50	00h (%):	44.2	46.9	48.7	47.4	54.2	48.3	3.7	7.6			
CD; Breaking Strength-500	h (N):	774.1	749.9	819.0	943.0	634.9	784.2	111.8	14.3			
CD; Elongation at break-50	0h (%):	60.5	56.8	57.5	55.7	48.3	55.8	4.5	8.1			

therine Grolean Kirand Catherine Groleau Rivard, Tech. Technician

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**

Appendix E1.2 Type B Geotextile



		SC	CACCICO	manon n	U., 7U+					
Mr Greig Graham							Date: N	1ay 25, 20	017	
Terrafix Geosynthetics l	ne.					R	teport: S	078-087-	95380A	
IDENTIFICATION:		ype B: B-1 Roll								
		pure Stoney Cree			ase Liner a	nd Leachat	te Collection	n System		
	Received: Ma	arch 28, 2017; PO	#: CL1629	GG006						
STANDARD:										
TEST:	Mass per Unit Area of Geotextiles							61 - 10		
TEST CONDITIONS:	Conditioned s	sample(s) (21°C,								
	10 test specin	nens of circular sl								
	Surface used									
	Tested March	n 30, 2017								
RESULTS:	3		Indiv	idual Data			Avg	S.D.	% CV	
B-1 Roll 030593685			5							
Mass per unit area (g/m²):		498	542	490	558	600	524	37	7.0	
- 10		532	472	519	505	522				
Mass per unit area (oz./yd.²)	 :	30.1	32.0	33.4	32.8	31.4	32.7	1.6	4.8	
		34.4	31.9	35.6	32.1	33.0				
B-2 Roll 030593687			1							
Mass per unit area (g/m²):		490	481	496	517	522	498	22	4.4	
		538	487	485	464	503				
Mass per unit area (oz./yd.²)	:	34.1	33.0	33.0	31.5	33.0	32.9	1.0	2.9	
* * *		32.6	33.9	34.3	32.2	31.7				

Prepared by:

Nancy Desautels

Approved by: Sylvie Pal

Nancy Bésautels, Technician For: Eric Blond, Eng., M.Sc.A. Vice-President

M.Sc.A. Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham Terrafix Geosynthetics	Inc.				Re		ay 25, 20 78-087-9		
IDENTIFICATION:	Geotextile Type B: B-1 Project: Terrapure Stoney Received: March 28, 2017	Creek Landfil	ll, Phase 8 E		3687		System		
STANDARD:				7					
TEST:	Measuring the Nominal Tl	nickness of G	eosynthetics		1	ASTM D519	9-12		
TEST CONDITIONS:	Conditioned sample(s) (21 Dimension of the test spec Apparatus: Frazier - meast Procedure used: A Diameter of the presser for Pressure applied (kPa): 2 Loading time interval: 5 se Tested March 30, 2017	imens: minim nring unit: inc ot (mm): 57 ec.;	num diamete h (has prece	edence on the		mm) ;			
RESULTS:	ā	Ind	ividual Data	a		Avg.	S.D.	% CV	
B-1 Roll 030593685									
Thickness (mils):	16 18		168 167	171 170	185 178	173	9	5.0	
Thickness (mm):	4.2 4.6		4.27 4.24	4.34 4.32	4.70 4.52	4.40	0.22	5.0	
B-2 Roll 030593687 Thickness (mils):	16 17		173 168	172 157	169 173	168	6	3.6	
Thickness (mm):	4.2 4.4		4.39 4.27	4.37 3.99	4.29 4.39	4.26	0.15	3.6	

Prepared by:

Nancy Desautels
Nancy Désautels,

Technician

Approved by: Sylvie Palp

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham Terrafix Geosynthetics	Inc.			•	]		May 25, 20 S078-087-9		
IDENTIFICATION:	Geotextile Type B: B-1 Ro Project: Terrapure Stoney Cre Received: March 28, 2017; P	eek Landfil	1, Phase 8		93687				
STANDARD:									
TEST:	Grab Breaking Load and Eloa	ngation of (		ASTM D	4632/D46321	M-15a			
TEST CONDITIONS:	Apparatus used: Dynamomete Grip surface texture: rubber; Speed: 300 mm/min; Full scale range used: 5kN 10 test specimens per directic Conditioned sample(s) (21°C Tested March 30, 2017	on;		te of Extens	sion (CRE)	;	μĒ		
RESULTS:		Ind	ividual Dat	a		Av	g. S.D.	% CV	
B-1 Roll 030593685 MACHINE DIRECTION									
Grab Breaking Load (N):	2159.6 1790.3	1839.7 1853.8	1727.0 1631.1	1597.0 1962.7	1689.0 1761.1	1 801.1	1 166.4	9.2	
Grab Breaking Load (lb):	485.5 402.5	413.6 416.7	388.2 366.7	359.0 441.2	379.7 395.9	404.9	37.4	9.2	
Elongation at break (%):	58.4 65.1	63.6 63.4	62.8 75.1	64.5 59.3	63.2 65.3	64.1	1 4.5	7.0	
CROSS DIRECTION									
Grab Breaking Load (N):	2131.6 1773.0	2084.9 1471.7	1726.0 1393.9	1817.7 1884.3	1812.4 1838.7	1 793.4	4 230.6	12.9	
Grab Breaking Load (lb):	479.2 398.6	468.7 330.8	388.0 313.3	408.6 423.6	407.4 413.3	403.2	2 51.9	12.9	
Elongation at break (%):	80.1	73.0	68.8	70.0	69.2	75.9	6.9	9.1	

Prepared by:

Catherine Groleau Rivard, Tech.
Technician

76.1

Approved by: Sylvie Palpé

80.1

69.9

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95380A

**IDENTIFICATION:** 

Geotextile Type B: B-1 Roll 030593685, B-2 Roll 030593687

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#; CL1629GG006

	Received: March 28, 2017; P	O#: CL162	9GG006			1			
STANDARD:									
TEST:	Grab Breaking Load and Elor	ngation of (	ASTM D463	2/D4632	M-15a				
RESULTS (CONT):	Individual Data Avg.							% CV	)
B-2 Roll 030593687	2								
MACHINE DIRECTION									
Grab Breaking Load (N):	1896.3	1487.6	1798.6	1665.2	1685.0	1 773.5	133.2	7.5	
	1796.4	1889.3	1804.1	1773.0	1939.9				
Grab Breaking Load (lb):	426.3	334.4	404.3	374.3	378.8	398.7	29.9	7.5	
	403.8	424.7	405.6	398.6	436.1				
Elongation at break (%):	63.8	64.1	69.4	62.1	67.7	65.2	2.8	4.3	
	67.8	66.7	65.9	60.5	63.8				
CROSS DIRECTION									
Grab Breaking Load (N):	2040.2	2063.0	1916.8	2112.1	1848.5	2 005.4	86.1	4.3	
	1978.7	1934.8	2096.2	1992.5	2070.9				
Grab Breaking Load (lb):	458.6	463.8	430.9	474.8	415.5	450.8	19.4	4.3	
	444.8	434.9	471.2	447.9	465.5				
Elongation at break (%):	74.9	71.9	70.8	76.0	68.9	75.2	3.6	4.8	
	75.1	80.2	77.4	78.6	77.8				

Prepared by:

Catherine Groleau Rivard, Tech.

Technician

Approved by: Sylvie D

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Report:

Date: May 25, 2017

Terrafix Geosynthetics Inc.

D 11 000500400

S078-087-95380A

**IDENTIFICATION:** 

Geotextile Type B: B-1 Roll 030593685, B-2 Roll 030593687

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST: Trapezoid Tearing Strength of Geotextiles

ASTM D4533/D4533M-15

TEST CONDITIONS:

Conditioned sample(s) (21°C, 65 % R.H.);

Apparatus used: Dynamometer with a Constant Rate of Extension (CRE);

Condition of the test specimens: dry;

Notch length: 15.9 mm;

10 test specimens per direction;

Tested March 31, 2017

Tosted I									
RESULTS:		Indi	vidual Data	a	2 /	Avg.	S.D.	% CV	
B-1 Roll 030593685 MACHINE DIRECTION	<del>12</del>								
Tearing Strength (N):	752.7	669.0	666.6	528.9	607.5	630.4	64.7	10.3	
	604.1	585.2	567.1	646.4	676.4				
Tearing Strength (lb):	169.2	150.4	149.8	118.9	136.6	141.7	14.5	10.3	
	135.8	131.5	127.5	145.3	152.0				
CROSS DIRECTION									
Tearing Strength (N):	685.1	728.0	718.0	616.7	704.7	685.4	54.1	7.9	
	759.9	593.4	720.7	630.7	697.1				
Tearing Strength (lb):	154,0	163.7	161.4	138.6	158.4	154.1	12.2	7.9	
	170.8	133 4	162.0	141.8	156.7				

Prepared by:

Nora Boudjedaïmi, Technician Approved by: Sylv

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95380A

IDENTIFICATION:

Geotextile Type B: B-1 Roll 030593685, B-2 Roll 030593687

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

	recorred march 20, 2017, x	OIII OLITOL	,00000						
STANDARD:	÷			-,					
TEST:	Trapezoid Tearing Strength of	of Geotextil	es		(1)	ASTM D4533	3/D4533	M-15	
RESULTS (CONT):		Indi	vidual Dat	a		Avg.	S.D.	% CV	
B-2 Roll 030593687									
MACHINE DIRECTION									
Tearing Strength (N):	633.0	562.3	594.6	647.7	585.4	643.6	58.8	9.1	
	740.5	608.2	651.5	709.2	703.3				
Tearing Strength (lb):	142.3	126.4	133.7	145.6	131.6	144.7	13.2	9.1	
	166.5	136.7	146.5	159.4	158.1				
CROSS DIRECTION									
Tearing Strength (N):	752.8	814.0	794.3	708.8	743.5	753.6	43.8	5.8	
T4 (1772) 10 (1772)	773.9	713.4	731.2	691.5	812.8				
Tearing Strength (lb):	169.2	183.0	178.6	159.3	167.1	169.4	9.9	5.8	
	174.0	160.4	164.4	155.4	182.7				

Prepared by:

Nora Boudjedaïmi, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



	3	CC Accre	contamon r	NO.: 40+					
Mr Greig Graham	T-						ay 25, 20 078-087-9		
Terrafix Geosynthetics					A THE RESERVE TO SERVE THE RESERVE THE RES	Report: So	)/0-00/-:	9336UA	
IDENTIFICATION:	Geotextile Type B: B-1 Ro					_ 65 #	2		
	Project: Terrapure Stoney Cro			Base Liner	and Leach	ate Collection	System		
	Received: March 28, 2017; P	O#: CL162	9GG006						
STANDARD:									10
TEST:	Index Puncture Resistance of Related Products			nbranes and	d	ASTM D48	33 - 00		
TEST CONDITIONS:	Conditioned sample(s) (21°C Apparatus used: Dynamomete Method of holding the specin Tested March 31, 2017	er with a C	onstant Rat			);			
RESULTS:		Ind	ividual Dat	ta		Avg.	S.D.	% CV	
B-1 Roll 030593685									
Puncture resistance (N):	1213.8	1094.3	1036.0	1141.8	1188.8	1 123.8	81.3	7.2	
Ŷ.	1306.6	1099.3	1205.1	1106.8	1088.4				
	1151.2	1136.3	1030.7	1057.4	1000.8				
Puncture resistance (lb):	272.9	246.0	232.9	256.7	267.2	252.6	18.3	7.2	
A 3000 (80000 v) 3000 to	293.7	247.1	270.9	248.8	244.7				
	258.8	255.4	231.7	237.7	225.0				
B-2 Roll 030593687									
Puncture resistance (N):	1156.2	1156.2	1137.5	1171.2	1281.5	1 146.2	90.3	7.9	
	1119.0	1334.5	989.3	1234.9	1158.5				
	1052.8	1088.8	1156.0	1127.3	1029.6				
Puncture resistance (lb):	259.9	259.9	255.7	263.3	288.1	257.7	20.3	7.9	
* *	251.6	300.0	222.4	277.6	260.4				
	236.7	244.8	259.9	253.4	231.5				

Prepared by:

Nora Boudjedaïmi, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham						Date:	May 25, 20	)17	
Terrafix Geosynthetics	Inc.				1	Report:	S078-087-9	95380A	
IDENTIFICATION:	Geotextile Type B: B- Project: Terrapure Stone Received: March 28, 201	y Creek Land	lfill, Phase 8			te Collecti	ion System	5	1
STANDARD:		-							14
TEST:	Bursting Strength of Tex Tester Method	tile Fabrics -	Diaphragm	Bursting St	rength	ASTM D	3786/D3786	M-13	
TEST CONDITIONS:	Conditioned sample(s) (Apparatus used: Bursting Measuring unit of the eq Maximum capacity of the Tested March 30, 2017	g Tester (Mu uipment: psi	llen), Type " ;	AH"; Pump	oing rate: 170	) ml/min;		N W	
RESULTS:	SILCE III	]	ndividual Da	ıta		Av	g. S.D.	% CV	
B-1 Roll 030593685									
Bursting Strength (psi):		51 65 13 71	50 OF550.V.	751 719	588 776	701	1 63	9.0	
Bursting Strength (kPa):		85 448 16 495		5175 4958	4054 5347	4 834	4 437	9.0	
B-2 Roll 030593687									
Bursting Strength (psi):		69 65 82 73		701 714	677 713	70	1 38	5.4	
Bursting Strength (kPa):		13 449 88 508		4830 4923	4664 4916	4 833	3 262	5.4	

Prepared by:

Nancy Fontaine, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95380A

**IDENTIFICATION:** 

Geotextile Type B: B-1 Roll 030593685

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST:

Determining Apparent Opening Size of a Geotextile

ASTM D4751 - 16 Meth. A

TEST CONDITIONS:

Method A: Dry-Sieving with glass beads.

Apparatus used: Sieve shaker ROTAP, model RX-29; Beads size ranges used (mm): 0.075, 0.106 and 0.150

Tested April 4 2017

rested April 4,	2017								
RESULTS:	Y	Indi	vidual Data	1	Light He	Avg.	S.D.	% CV	
Weight of the specimen (g):	30.4	24.3	26.6	25.4	25.3				
AOS-A (mm):	0.106	0.150	0.150	0.150	0.150	0.141	0.020	13.9	
Theoretical bead size (mm):	0.105	0.144	0.136	0.139	0.140	0.133	0.016	11.9	

Prepared by:

Technician

Approved by:

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report: S078-087-95380A

IDENTIFICATION: Geotextile Type B: B-1 Roll 030593685

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST: Water Permeability of Geotextiles by Permittivity

ASTM D4491/D4491M-15

TEST CONDITIONS: Method A: Constant Head Test;

Temperature of the water (°C): 21.0

Flow diameter (mm) 54 Tested April 3, 2015

Tested April 3,	2015							
RESULTS:		I	ndividual Da	ata	Avg.	S.D.	% CV	
Thickness (mm):	4.3	2 4.4	7 4.78	4.37	 			
Permeability (E-01 cm/s):	- 4	.1 3.4	4 3.5	4.0	3.8	0.4	9.4	
Permittivity (s-1):	0.9	0.7	7 0.73	0.91	 0.84	0.10	12.3	
Flow Rate under 51 mm hydraulic head (gal./min/ft²):	72	.4 58.	56.2	69.8	 64.3	8.0	12.4	

Prepared by:

Súzie Côté, P.T. Technician Approved by:

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: May 25, 2017

Report:

S078-087-95380A

IDENTIFICATION:	Geotextile T	ype B: B-1	Roll 030593685

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST:

Deterioration of Geotextiles by Exposure to Light, Moisture and

ASTM D4355-14

Heat in a Xenon Arc Type Apparatus

**TEST CONDITIONS:** 

Mechanical test: Conditioning: 21°C, 65 % R.H.; Apparatus used: dynamometer (CRE); Speed: 305 mm/min;

5 test specimens/direction sampled after exposure (2" width);

MD: Machine direction and/or CD: Cross direction;

Exposition: Apparatus used: Water-cooled xenon arc lamp apparatus;

Exposition cycle: 90 min of light only, followed by 30 min of water spray and light;

Temperature of the black pannel:  $65 \pm 3^{\circ}$ C,  $50 \pm 10\%$  R.H.; Irradiation: 0.35 W/m²/nm @ 340 nm;

Inner Filter: borosilicate; Age at the beginning of the exposure (hours): 29 Outer Filter: borosilicate; Age at the beginning of the exposure (hours): 1029

Tested from April 27 to May 19, 2017 (UV exposure) and May 24, 2017 (Tensile tests)

RESULTS:		Ind	ividual Dat	a		Avg.	S.D.	% CV	
AVERAGE RESIDUAL PROPERTIES	••••								
After an exposure period of 500 h						*****			
MD; Retained Strength (%):	77.9								
CD; Retained Strength (%):	70.2								
INDIVIDUALS RESULTS	•••								
MD; Breaking Strength-Initial (N):	2150.3	1381.6	1436.7	1658.7	1503.7	1 626.2	310.8	19.1	
MD; Elongation at break-Initial (%):	61.5	65.1	63.0	58.2	58.0	61.2	3.1	5.0	
CD; Breaking Strength-Initial (N):	1812.5	1915.5	1710.5	1570.4	1567.7	1 715.3	151.9	8.9	
CD; Elongation at break-Initial (%):	86.2	57.1	70.0	72.1	76.9	72.5	10.6	14.6	
MD; Breaking Strength-500h (N):	1601.2	1162.8	1089.6	1246.0	1233.3	1 266.6	197.2	15.6	
MD; Elongation at break-500h (%):	47.3	55.5	50.2	44.0	44.3	48.3	4.8	9.9	
CD; Breaking Strength-500h (N):	1401.1	1231.7	1175.0	1069.6	1142.3	1 203.9	124.8	10.4	
CD; Elongation at break-500h (%):	71.6	54.5	57.7	57.5	69.3	62.1	7.8	12.5	

Prepared by:

atherine Grolean Rivard Catherine Groleau Rivard, Tech. Technician

Approved by:

Vice-President

Date: May 25, 2017

**For any information concerning this report, please contact Eric Blond**

Appendix E1.3 Letter from the Manufacturer



Sales Office:

Engineered Synthetics Products Inc.

Phone: (770) 564-1857 Fax: (770) 564-1818

Date: August 22nd, 2017

**Terrafix Environmental Technology Inc.** 

455 Homer Avenue Toronto, Ontario M8W 4W9

Ref : Terrapure Landfill PO : CL1629-TerraPure

**SUBJECT: Annual UV Resistance Testing for SKAPS Industries Products** 

To whom it may concern,

This letter is to inform that SKAPS Industries certifies UV Resistance based on third party testing, annually. SKAPS Industries certifies its products to retain at least 70% of its strength after being exposed to direct UV for five-hundred (500) hours (ASTM D 4355). SKAPS Industries nonwoven geotextiles are composed of one-hundred percent virgin raw polypropylene material. Therefore, all GE and GT styled products are composed of identical raw polypropylene fibers.

Attached to this document is the third party annual testing result for UV Resistance performed in 2017 for SKAPS Industries' GE160. SKAPS Industries' GE style products supplied to the referenced project are heavier and thicker fabrics, therefore, will retain a greater amount of strength after exposed in the UV Resistance chamber in comparison to SKAPS GE160. SKAPS Industries certifies that the GE110 supplied to this project will meet or exceed the requirements of UV Resistance.

Please feel free to contact SKAPS Industries if you have any questions.

Regards,

Kourosh Sabzevari

**Quality Control Manager** 

<= Same

6/2/2017

Mail To: Bill To:

Kourosh R. Sabzevari SKAPS Industries

335 Athena Drive Athens, Georgia 30601

email: kourosh@skaps.com email: anurag@skaps.com

Dear Mr. Sabzevari:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report of the laboratory testing for the sample(s) listed below.

Project: Third Party Testing - GE160 UV Resistance

TRI Job Reference Number: 28417

Material(s) Tested: One, Skaps GE 160 Geotextile

Test(s) Requested: UV Resistance (ASTM D 4355)

If you have any questions or require any additional information, please call us at 1-800-880-8378

Sincerely,

Mansukh Patel Laboratory Manager Geosynthetic Services Division www.GeosyntheticTesting.com

*Signature is on file

## GEOTEXTILE TEST RESULTS TRI Client: SKAPS Industries Project: Third Party Testing - GE160 UV Resistance

Material: Skaps GE 160 Geotextile Sample Identification: GE160

TRI Log #: 28417

PARAMETER	TEST RE	PLICATE I	NUMBER								MEAN	DEV.	COV
	1	2	3	4	5	6	7	8	9	10			
UV Resistance (ASTM D 4355)													
Strength Retained measured via strip	tensile (ASTN	1 D 5035)											PERCENT
												_	RETAINED
MD - Tensile Strength (lbs) - B	245	219	214	193	183						211	24	11.47
MD - Tensile Strength (ppi) - B	123	110	107	97	92						105	12	
MD - Tensile Strength (N) - B	1090	975	952	859	814						938	108	
MD - Tensile Strength (kN/m) - B	21.5	19.2	18.7	16.9	16.0						18.5	2.1	
MD - Tensile Strength (lbs) - E	181	200	175	208	228						198	21	10.75
MD - Tensile Strength (ppi) - E	91	100	88	104	114						99	11	
MD - Tensile Strength (N) - E	805	890	779	926	1015						883	95	
MD - Tensile Strength (kN/m) - E	15.9	17.5	15.3	18.2	20.0						17.4	1.9	94
TD - Tensile Strength (lbs) - B	188	226	204	238	213						214	19	9.05
ΓD - Tensile Strength (ppi) - B	94	113	102	119	107						107	10	
TD - Tensile Strength (N) - B	837	1006	908	1059	948						951	86	
ΓD - Tensile Strength (kN/m) - B	16.5	19.8	17.9	20.8	18.7						18.7	1.7	
TD - Tensile Strength (lbs) - E	182	203	236	237	215						215	23	10.82
TD - Tensile Strength (ppi) - E	91	102	118	119	108						107	12	
TD - Tensile Strength (N) - E	810	903	1050	1055	957						955	103	
TD - Tensile Strength (kN/m) - E	15.9	17.8	20.7	20.8	18.8						18.8	2.0	100
MD - Elong. @ Max. Load (%) - B	74.0	83.0	79.0	75.0	73.0						77	4	
ID - Elong. @ Max. Load (%) - E	65.0	62.0	58.0	69.0	64.0						64	4	83
D - Elong. @ Max. Load (%) - B	97.0	107.0	103.0	103.0	95.0						101	5	
TD - Elong. @ Max. Load (%) - E	85.0	93.0	83.0	94.0	81.0						87	6	86
· ·													
B - Baseline Unexposed E - Exposed for 500 hours of ASTM D	4355 Cycle												

MD Machine Direction

TD Transverse Direction

## Appendix E2 Textured Geomembrane



Mr Greig Graham Terrafix Geosynthetics	z Inc						Date: Ap	ril 21, 2 78-087-9			
IDENTIFICATION:	Textured geomembra Project: Terrapure Ston Received: March 28, 20	ey Cree	ek Landfill,	Phase 8 B		7659, G-3	Roll 5-276:	56	7337711		
STANDARD:				14	V.						
TEST:	Core Thickness of Text	ured G	eomembran	ie	D.	A	ASTM D599	4/D5994	-10(2015)	e1	
TEST CONDITIONS:	Conditioned sample(s) (21 °C, 65 % R.H.);  Apparatus used: Mitutoyo - measuring unit: inch (has precedence on the values in mm);  Load applied: 0.56 N;  Loading time: 5 sec.;  10 test specimens per product;  Tested March 31, 2017										
RESULTS:	10000 11111011 51, 2017		Indiv	idual Data	3		Avg.	S.D.	% CV		
G-1 Roll 5-27654									gs.		
Thickness (mils):		79 84	80 79	80 81	84 83	84 85	82	2	2.8		
Thickness (mm):		2.00 2.14	2.03 2.01	2.04 2.06	2.13 2.10	2.14 2.15	2.08	0.06	2.8		
G-2 Roll 5-27659			14								
Thickness (mils):		79 82	76 83	79 80	78 80	81 79	80	2	2.5		
Thickness (mm):		2.01 2.07	1.94 2.11	2.01 2.04	1.99 2.03	2.06 2.00	2.03	0.05	2,3		
G-3 Roll 5-27656											
Thickness (mils):		78 81	79 81	80 80	80 80	81 81	80	1	1.2		
Thickness (mm):		1.97 2.05	2.01 2.06	2.03 2.04	2.04 2.02	2.05 2.05	2.03	0.03	1.3		

Prepared by:

Nancy Desautels Nancy Bésautels,

Technician

Approved by: Sylvie Da

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham			Date:	April 21, 2	017	
Terrafix Geosynthetics	s Inc.		Report:	S078-087-	95377A	
IDENTIFICATION:	•	-1 Roll 5-27654, G-2 Roll 5-27659 tek Landfill, Phase 8 Base Liner and I O#: CL1629GG006			ľ	
STANDARD:						
TEST:	Density and Specific Gravity Displacement	(Relative Density) of Plastics by	ASTM D	792-13 Meth	od B	
TEST CONDITIONS:	Test method B; Conditioned sample(s) minim Immersion liquid: Ethanol Temperature of the immersion Tested March 31, 2017	num 24 hours at 21°C, 65% R.H.; n liquid (°C): 23.2				16
RESULTS:		Individual Data	A	g. S.D.	% CV	
G-1 Roll 5-27654 Density (g/cm³):	0.948	0.948	0.94	8 0.000	0.0	
G-2 Roll 5-27659 Density (g/cm³):	0.948	0.948	0.94	8 0.000	0.0	
G-3 Roll 5-27656 Density (g/cm³):	0.948	0.948	0.94	8 0.000	0.0	

Prepared by:

Nancy Desautels
Nancy Désautels,

Technician

Approved by: S

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



		o o o nicero		1011								
Mr Greig Graham						Date: Ap	oril 21, 2	017				
Terrafix Geosynthetics	Inc.					Report: SO	78-087-9	95377A				
IDENTIFICATION:	Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656  Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System											
	Received: March 28, 2017;			Dase Lillei	and Leach	ate Conection	System					
STANDARD:	Received, Matter 25, 2017,	rom obroz	70000									
	Measuring the Asperity Height of Textured Geomembranes ASTM D7466/D7466M											
TEST:	Measuring the Asperity Hei	gnt of Textu	rea Geome	moranes		ASTM D/40	) (1400)	WI-10 (20	13)61			
TEST CONDITIONS:		Conditioned sample(s) (21 °C, 65 % R.H.);  Apparatus used: Dial gage with a precision of ± 0.001 inch;  Tested April 3, 2017										
RESULTS:		Indi	ividual Data	a		Avg.	S.D.	% CV				
G-1 Roll 5-27654												
Side A: Asperity Height (mr	n): 0.84	0.79	0.84	0.76	0.89	0.82	0.05	6.2				
	0.86	0.81	0.86	0.76	0.74							
Side A: Asperity Height (inc	ch): 0.033	0.031	0.033	0.030	0.035	0.032	0.002	6.3				
	0.034	0.032	0.034	0.030	0.029							
Side B: Asperity Height (mr	n): 0.58	0.69	0.51	0.53	0.53	0.56	0.05	9.4				
	0.53	0.53	0.58	0.56	0.53							
Side B: Asperity Height (inc	ch): 0.023	0.027	0.020	0.021	0.021	0.022	0.002	9.1				
	0.021	0.021	0.023	0.022	0.021							
G-2 Roll 5-27659												
Side A: Asperity Height (mi	n): 0.51	0.61	0.56	0.58	0.46	0.56	0.05	8.3				
	0.56	0.53	0.58	0.61	0.56							
Side A: Asperity Height (inc	ch): 0.020	0.024	0.022	0.023	0.018	0.022	0.002	8.5				
5 m 15 20	0.022	0.021	0.023	0.024	0.022							
Side B: Asperity Height (mi	m): 0.58	0.61	0.64	0.51	0.64	0.59	0.06	10.2				
The second secon	0.69	0.58	0.53	0.51	0.61							
Side B: Asperity Height (inc	ch): 0.023	0.024	0.025	0.020	0.025	0.023	0.002	9.9				

Prepared by:

Nancy Fontaine, Tech.

Technician

0.027

Approved by: Sylvie Palpé

0.021

0.023

0.020

0.024

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: April 21, 2017

Report:

S078-087-95377A

**IDENTIFICATION:** Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

_	_				_
ST	ГА	N	DA	R	D٠

TEST:	Measuring t	he Asperity Heigh	it of Textur	ASTM D7466/D7466M-10 (2015)e1						
RESULTS (CONT):			Indi	vidual Data	Avg.	S.D.	% CV			
G-3 Roll 5-27656										
Side A: Asperity Heigh	nt (mm):	0.69	0.58	0.66	0.64	0.71	0.62	0.06	9.4	
		0.58	0.61	0.56	0.53	0.61				
Side A: Asperity Heigh	nt (inch):	0.027	0.023	0.026	0.025	0.028	0.024	0.002	9.1	
		0.023	0.024	0.022	0.021	0.024				
Side B: Asperity Heigh	nt (mm):	0.48	0,53	0.48	0.61	0.58	0.54	0.06	11.2	
		0.56	0.46	0.51	0.51	0.64				
Side B: Asperity Heigh	nt (inch):	0.019	0.021	0.019	0.024	0.023	0.021	0.002	11.0	
	The state of the s	0.022	0.018	0.020	0.020	0.025				

Prepared by:

Nancy Fontaine, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham Terrafix Geosynthetics	Inc							il 21, 20 8-087-9					
IDENTIFICATION:	Textured geomembrar Project: Terrapure Stone Received: March 28, 20	y Creek	Landfill,	Phase 8 B		7659, G-3 I	Roll 5-2765	6	3377A				
STANDARD:							0						
TEST:	Flexible Polypropylene	Tensile Properties of Nonreinforced Polyethylene and Nonreinforced ASTM D6693/D6693M-04 (2015)e1 Flexible Polypropylene Geomembrane											
TEST CONDITIONS:	Conditioned sample(s) (21±2°C); 5 die cut specimens per direction; Apparatus used: Dynamometer with a Constant Rate of Extension (CRE); Speed (mm/min): 50 Tested March 30, 2017												
RESULTS:			Indiv	idual Data			Avg.	S.D.	% CV				
G-1 Roll 5-27654 MACHINE DIRECTION		-											
Strength at yield (kN/m):	3	8.8	37.4	39.6	37.8	37.5	38.2	0.9	2.5				
Strength at yield (lb/in):		221	213	226	216	214	218	5	2.5				
Elongation at yield (%):		16	15	17	16	17	16	1	5.2				
Strength at break (kN/m):	4	8.4	44.9	53.1	52.3	47.3	49.2	3.4	7.0				
Strength at break (lb/in):		276	256	303	299	270	281	20	7.1				
Elongation at break (%):		560	510	610	620	550	570	45	7.9				
CROSS DIRECTION													
Strength at yield (kN/m):	3	7.3	37.5	38.9	37.6	36.1	37.5	1.0	2.7				
Strength at yield (lb/in):		213	214	222	214	206	214	6	2.7				
Elongation at yield (%):		16	16	16	16	16	16	0	0.0				
Strength at break (kN/m):	4	0.4	27.9	43.5	44.2	46.5	40.5	7.4	18.2				

Prepared by:

Strength at break (lb/in):

Elongation at break (%):

Nancy Fontaine, Tech.
Technician

231

160

120

Approved by: Sylvie Da

249

500

253

540

265

580

232

446

For: Eric Blond, Eng., M.Sc.A. Vice-President Date: April 21, 2017

18.1

41.6

186

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: April 21, 2017

Report: S078-087-95377A

**IDENTIFICATION:** 

Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656

Project: Terrapure Stoney Creek Landfill Phase 8 Base Liner and Leachate Collection System

	Received: March 28, 2017; Po		A. C.	ase Liner a	and Leach	ate Collection S	System				
STANDARD:	× 3								1		
TEST:		Tensile Properties of Nonreinforced Polyethylene and Nonreinforced ASTM Flexible Polypropylene Geomembrane									
RESULTS (CONT):		Indi	ividual Data			Avg.	S.D.	% CV			
G-2 Roll 5-27659											
MACHINE DIRECTION											
Strength at yield (kN/m):	36.1	36.2	38.1	36.0	35.7	36.4	1.0	2.6			
Strength at yield (lb/in):	206	207	218	206	204	208	6	2.7			
Elongation at yield (%):	15	17	18	17	17	17	1	6.5			
Strength at break (kN/m):	43.8	43.1	44.9	52.3	51.6	47.1	4.4	9.4			
Strength at break (lb/in):	250	246	256	299	295	269	26	9.5			
Elongation at break (%):	520	520	500	640	630	562	67	12.0			
CROSS DIRECTION	Sec.										
Strength at yield (kN/m):	36.2	36.6	39.2	35.7	36.3	36.8	1.4	3.8			
Strength at yield (lb/in):	207	209	224	204	208	210	8	3.7			
Elongation at yield (%):	16	16	16	16	16	16	0	0.0			
Strength at break (kN/m):	45.6	41.2	34.3	43.5	42.8	41.5	4.3	10.4	,		
Strength at break (lb/in):	261	235	196	248	244	237	25	10.4			
Elongation at break (%):	580	500	390	550	530	510	73	14.3			

Prepared by:

Nancy Fontaine, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: April 21, 2017

Report: S078-087-95377A

IDF	NIT	וכדד	MAI	TIO	AT.
11)	IVI	ırı	LA	110	IIV:

Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

	Received: March 28, 2017; I		and the contract of the contract of	sase Liner a	and Leach	ate Conection s	ystem		
STANDARD:									.71
TEST:	Tensile Properties of Nonrei Flexible Polypropylene Geor		yethylene a	nd Nonrein	forced	ASTM D6693	15)e1		
RESULTS (CONT):		Ind	ividual Data	a	4	Avg.	S.D.	% CV	
G-3 Roll 5-27656 MACHINE DIRECTION									
Strength at yield (kN/m):	35.6	36.0	36.9	35.8	35.2	35.9	0.6	1.8	
Strength at yield (lb/in):	203	206	211	204	201	205	4	1.9	
Elongation at yield (%):	17	17	17	17	18	17	0	2.6	
Strength at break (kN/m):	45.7	48.5	53.2	53.0	42.8	48.6	4.5	9.3	
Strength at break (lb/in):	261	277	303	303	245	278	26	9.2	
Elongation at break (%):	540	560	590	610	480	556	50	9.0	
CROSS DIRECTION					8				
Strength at yield (kN/m):	37.7	38.2	38.5	37.3	36.6	37.7	0.8	2.0	
Strength at yield (lb/in):	215	218	220	213	209	215	4	2.0	
Elongation at yield (%):	16	16	17	17	17	17	1	3.3	
Strength at break (kN/m):	43.9	45.3	33.7	39.2	29.9	38.4	6.6	17.1	
Strength at break (lb/in):	251	259	192	224	171	219	38	17.2	
Elongation at break (%):	560	570	390	490	350	472	99	21.0	

Prepared by:

Nancy Fontaine, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham <b>Terrafix Geosynthetic</b> s	Ino						ril 21, 2	017 95377A					
TETTAILX GEOSYITHETICS  IDENTIFICATION:	Textured geomembrane: G Project: Terrapure Stoney Cre Received: March 28, 2017; PC	ek Landfill	, Phase 8 E		7659, G-	3 Roll 5-2765	66	93311A					
STANDARD:													
TEST:	Index Puncture Resistance of	Geomembr	anes and R	elated Pro	ducts	ASTM D4833	3/D4833	M - 07(201	3)e1				
TEST CONDITIONS:	Apparatus used: Dynamomete	• • • • • • • • • • • • • • • • • • • •											
RESULTS:		Indi	vidual Data	ì		Avg.	S.D.	% CV					
G-1 Roll 5-27654 Puncture resistance (N):	786.7 796.2 814.2	813.8 797.1 820.9	814.8 818.2 824.4	804.6 839.7 841.5	799.6 816.3 814.7	813.5	15.2	1.9					
Puncture resistance (lb):	176.9 179.0 183.0	182.9 179.2 184.5	183.2 183.9 185.3	180.9 188.8 189.2	179.7 183.5 183.1	182.9	3.4	1.9					
G-2 Roll 5-27659													
Puncture resistance (N):	816.6 810.0 812.6	799.3 808.5 795.5	781.8 810.6 807.5	808.3 816.6 805.0	793.2 791.5 781.9	802.6	11.5	1.4					
Puncture resistance (lb):	183.6 182.1 182.7	179.7 181.8 178.8	175.7 182.2 181.5	181.7 183.6 181.0	178.3 177.9 175.8	180.4	2.6	1.4					
G-3 Roll 5-27656													
Puncture resistance (N):	797.6 773.4 806.5	793.0 817.8 813.9	770.1 808.9 831.2	776.5 806.5 815.7	784.0 832.6 786.5	800.9	20.0	2.5					
Puncture resistance (lb):	179.3 173.9 181.3	178.3 183.8 183.0	173.1 181.8 186.8	174.6 181.3 183.4	176.2 187.2 176.8	180.1	4.5	2.5					

Prepared by:

Nora Boudjedaïmi, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

Terrafix Geosynthetics Inc.

Date: April 21, 2017

Report:

S078-087-95377A

**IDENTIFICATION:** 

Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:

TEST:

Tear Resistance (Graves Tear) of Plastic Film and Sheeting

ASTM D1004 - 13

TEST CONDITIONS:

Conditioned sample(s) (23±2°C, 50±10% R.H.);

Apparatus used: Dynamometer with a Constant Rate of Extension (CRE);

10 test specimens per direction;

Tested March 31, 2017

RESULTS:		Indiv	vidual Data			Avg.	S.D.	% CV	
G-1 Roll 5-27654									
MACHINE DIRECTION	**								
Tearing Strength (N):	350	353	338	336	343	343	6	1.7	
	350	339	345	338	342				
Specimen thickness (mm):	2.17	2.19	2.06	2.10	2.20	2.12	0.06	2.6	
	2.14	2.13	2.05	2.08	2.07				
Maximum extension (mm):	20	22	20	22	21	21	1	3.9	
	21	22	21	22	22				
CROSS DIRECTION									
Tearing Strength (N):	322	311	331	333	340	327	8	2.5	
	333	322	326	323	327				
Specimen thickness (mm):	1.99	2.07	2.13	2.07	2.14	2.09	0.06	2.7	
20 St	2.18	2.10	2.10	2.09	2.01				
Maximum extension (mm):	21	21	20	21	20	21	1	2.6	
	21	20	20	20	21				

Prepared by:

Technician

Approved by:

Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**

Date: April 21, 2017

Report:

S078-087-95377A



## ANALYSIS REPORT SCC Accreditation No.: 40‡

Mr Greig Graham

**IDENTIFICATION:** 

Terrafix Geosynthetics Inc.

Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656 Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

	Received: March 28, 2017; P			Dasc Liner	and Leaci	iate Confection i	System		
STANDARD:									
TEST:	Tear Resistance (Graves Tea	r) of Plastic	Film and S	Sheeting		ASTM D100	4 - 13		
RESULTS (CONT):		Indi	vidual Data	1		Avg.	S.D.	% CV	
G-2 Roll 5-27659									
MACHINE DIRECTION	<b>6</b> 22								
Tearing Strength (N):	325	338	344	348	350	338	8	2.4	
	338	329	331	335	340			0.0000000	
Specimen thickness (mm):	2.04	1.97	2.06	2.02	2.10	2.05	0.06	2.7	
	2.15	2.05	1.98	2.10	2.03				
Maximum extension (mm):	22	23	22	22	21	22	1	3.1	
	21	22	22	21	21				
CROSS DIRECTION	84.								
Tearing Strength (N):	303	316	318	325	344	317	13	4.2	
28	332	302	306	312	315				
Specimen thickness (mm):	2.06	1.99	2.09	2.04	2.16	2.07	0.05	2.6	
	2.13	2.02	2.01	2.10	2.09	ಂದರುಕಂಡೆ!!	0000Ac0000		
Maximum extension (mm):	21	20	20	20	20	20	0	1.6	
	20	20	20	20	20				

Prepared by:

Nancy Fontaine, Tech.
Technician

Approved by: Sylvie Palpé

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham

IDENTIFICATION:

Terrafix Geosynthetics Inc.

Date: April 21, 2017

Report:

S078-087-95377A

Textured geomembrane: G-1 Roll 5-27654, G-2 Roll 5-27659, G-3 Roll 5-27656

Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System

Received: March 28, 2017; PO#: CL1629GG006

STANDARD:									
TEST: Tear	Resistance (Graves Tear)	of Plastic	Film and S	heeting	1	ASTM D1004	- 13		
RESULTS (CONT):		Indi	vidual Data			Avg.	S.D.	% CV	
G-3 Roll 5-27656 MACHINE DIRECTION									
Tearing Strength (N):	329 339	329 344	335 357	343 340	355 349	342	10	2.8	
Specimen thickness (mm):	2.10 2.10	1.91 2.00	2.00 2.05	2.06 2.12	2.13 2.13	2.06	0.07	3.5	
Maximum extension (mm):	22 22	21 22	22 22	22 22	22 22	22	0	1.4	
CROSS DIRECTION									
Tearing Strength (N):	322 336	323 321	328 315	321 327	335 326	325	6	2.0	
Specimen thickness (mm):	1.99 2.10	2.02 2.09	2.06 2.03	2.07 2.06	2.12 2.07	2.06	0.04	1.9	
Maximum extension (mm):	21 19	20 21	20 20	21 19	20 19	20	1	4.1	

Prepared by:

Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham			Date:	April 21, 2	2017	
<b>Terrafix Geosynthetics</b>	Inc.		Report:	S078-087-		
IDENTIFICATION:	Textured geomembrane: G Project: Terrapure Stoney Cre Received: March 28, 2017; Po	ek Landfill, Phase 8 Base		27656		
STANDARD:						
TEST:	Carbon Black Content in Ole	fin Plastics	ASTM I	01603-14		
TEST CONDITIONS:	As described in the test method	od;				
	The test specimens were sam Carbon black content include Tested March 30, 2017					
RESULTS:		Individual Data	A	vg. S.D.	% CV	
G-1 Roll 5-27654 Carbon black content (%):	2.67	2.65	2.0	<b>66</b> 0.01	0.5	
G-2 Roll 5-27659 Carbon black content (%):	2.75	2.72	2.3	4 0.02	0.8	
G-3 Roll 5-27656 Carbon black content (%):	2.64	2.63	2.6	5 <b>4</b> 0.01	0.3	

Prepared by:

Karine Tourchot, Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham						Date:	April 21, 2017	
<b>Terrafix Geosynthetics</b>	Inc.					Report:	S078-087-95377	'A
IDENTIFICATION:	Textured geomembrand Project: Terrapure Stoney Received: March 28, 201	Creek L	andfill, P	hase 8 Bas				
STANDARD:								
TEST:	Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics  ASTM D5596 - 03 (2016)							
TEST CONDITIONS:	5 test specimens (2 fields Method of preparation of Tested April 4, 2017				7	н	1	
RESULTS:			Individ	lual Data			ASSISTANCE OF THE SECOND	
G-1 Roll 5-27654								
Category:		1 1	1	1	1	1 1		
G-2 Roll 5-27659								
Category:		1 1	1 1	1 1	1 1	1 1		
G-3 Roll 5-27656								
Category:		1	1	1	1	1		

Prepared by:

Nancy Desautels

Nancy Desautels,

Technician

Approved by: Sylvie Palpé

Sylvie Palpé

For: Eric Blond, Eng., M.Sc.A.

Date: April 21, 2017

Vice-President

**For any information concerning this report, please contact Eric Blond**



			Date: Ap	ril 21, 2	017			
Terrafix Geosynthetics	s Inc.		Report: S0'	78-087-9	95377A			
IDENTIFICATION:		G-1 Roll 5-27654, G-2 Roll 5-27659 eek Landfill, Phase 8 Base Liner and L						
	Received: March 28, 2017; P		eachate Confection	System				
STANDARD:								
TEST:	Oxidative-Induction Time of Calorimetry	Polyolefins by Differential Scanning	ASTM D389	5-14				
TEST CONDITIONS:	Apparatus used: DSC autosampler Q100W/MFC Differential Scanning Calorimeter TA Instrument; Type of cup: aluminium; Test specimens prepared as per ASTM D4703 (molding by compression to a thickness of 0.25 mm); Temperature (°C): 200  The tangent method is used to determine the oxidation-induction time; Sample blended by "two-roll milling" at 150°C for 2 1/2 minutes; Tested between March 30 and 31, 2017							
RESULTS:		Individual Data	Avg.	S.D.	% CV			
G-1 Roll 5-27654								
	220	222	221	/1	0.6			
OIT (min):	220	222	221	/1	0.6			
G-1 Roll 5-27654 OIT (min): G-2 Roll 5-27659 OIT (min):	220 216	222	221 217	1	0.6			
OIT (min):  G-2 Roll 5-27659  OIT (min):	216	я	10 2200	1				

Prepared by:

Karine Tourchot,

Technician

Approved by: Sylvie Pall

For: Eric Blond, Eng., M.Sc.A. Vice-President

M.Sc.A. Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham Terrafix Geosynthetics	Inc.					Ì	Date: Report:	April 21, 2017 S078-087-95377A	
IDENTIFICATION:	Textured geo Project: Terrap	membrane: G- oure Stoney Cree rch 28, 2017; PC	ek Landfill	, Phase 8 E		7659, G-:	3 Roll 5-	-27656	
STANDARD:									
TEST:		Stress Crack Re		Polyolefin	Geom, usin	ng	ASTM 1	D5397 - 07(2012) (App)	= II
TEST CONDITIONS:	Residual thick Constant ligan Nominal thick Exposition per	0-630; Test temp ness in the note nent-stress: 30% ness considered riod (hours): 500 larch 31 to Apri	hed area: 8 of the yiel (mils): 80 )	0%;	room temp	erature ;			Ta y
RESULTS:			Indi	vidual Data	ì				
G-1 Roll 5-27654									
Test direction:		Cross							
Yield stress at room To (ps	si):	2641.6							
Specimen thickness in the (mils):	notched area	79.6	79.2	80.9	81.0	79.9			~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Ligament thickness (mils):		64.0							
Hours to Failure :		>500	>500	>500	>500	>500			
G-2 Roll 5-27659									
Test direction:		Cross							
Yield stress at room To (ps	si):	2536.1							
Specimen thickness in the (mils):	notched area	77.9	78.8	78.7	79.0	77.8			
Ligament thickness (mils):		64.0							
Hours to Failure :		>500	>500	>500	>500	>500			

Prepared by:

Catherine Grolean Catherine Groleau Rivard, Tech. Technician

Approved by:

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham						D	ate:	April 21, 2017	
Terrafix Geosynthetics	Inc.					Repo	ort:	S078-087-95377A	
IDENTIFICATION:	Textured geo	membrane: G-	1 Roll 5-	27654, G-	2 Roll 5-2	7659, G-3 Ro	oll 5-	27656	
	Project: Terrap	oure Stoney Cree	ek Landfill	, Phase 8 E	ase Liner	and Leachate C	ollec	etion System	
	Received: Mai	ch 28, 2017; PC	)#: CL1629	9GG006					
STANDARD:									
TEST:	Evaluation of	Stress Crack Re	sistance of	Polyolefin	Geom. usi	ng AS'	TM I	O5397 - 07(2012) (App)	
MACONIA MARKAMANIA MIT	Notched Const	ant Tensile Loa	d Test	•					
RESULTS (CONT):			Indi	vidual Data	l _g				
G-3 Roll 5-27656									
Test direction:		Cross							
Yield stress at room To (psi)	 ::	2488.3							
Specimen thickness in the no (mils):	otched area	78.1	78.3	79.7	78.5	79.6			
Ligament thickness (mils):		64.0							
Hours to Failure:		>500	>500	>500	>500	>500			

Prepared by:

Catherine Groleau Rivard Catherine Groleau Rivard, Tech.

Technician

Approved by: Sylvie Palpé

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: April 21, 2017

**For any information concerning this report, please contact Eric Blond**

Sample: G1 Roll 5-27654 Size: 5.1600 mg

Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G1 Roll 5-27654.001

Operator: Karine Tourchot Run Date: 31-Mar-2017 00:13



Sample: G1 Roll 5-27654

Size: 5.3600 mg Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G1 Roll 5-27654.002

Operator: Karine Tourchot Run Date: 31-Mar-2017 13:05



Sample: G2 Roll 5-27659 Size: 5.0000 mg

Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G2 Roll 5-27659.001

Operator: Karine Tourchot Run Date: 30-Mar-2017 11:49



Sample: G2 Roll 5-27659

Size: 5.3800 mg Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G2 Roll 5-27659.002

Operator: Karine Tourchot Run Date: 31-Mar-2017 06:25



Sample: G3 Roll 5-27656

Size: 5.0000 mg Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G3 Roll 5-27656.001

Operator: Karine Tourchot Run Date: 30-Mar-2017 18:01



Sample: G3 Roll 5-27656

Size: 5.1600 mg Method: OIT

Comment: (S078-87-95377)

DSC

File: C:...\S078-87\G3 Roll 5-27656.003

Operator: Karine Tourchot Run Date: 31-Mar-2017 18:02





Date: July 6, 2017 Mr Greig Graham Report: S078-087-95378A Terrafix Geosynthetics Inc. **IDENTIFICATION:** Geomembrane aging: G-1 Roll 5-27654 Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Leachate Collection System Received: March 28, 2017; PO#: CL1629GG006 STANDARD: TEST: Air Oven Aging of Polyolefin Geomembranes ASTM D5721-08(2013) AIR-OVEN AGING: TEST CONDITIONS: Rotation of the exposed specimens: once per week; Apparatus used: Force-ventilation oven "Blue M"; Temperature (°C): 85 Beginning of exposure: April 3, 2017 End of exposure: July 3, 2017 HP-OIT as per ASTM D5885; Sample blended by "two-roll milling" at 150°C for 2 1/2 minutes; Test specimens prepared as per ASTM D4703 (molding by compression to a thickness of 0.25 mm); Apparatus used: DSC Q20 Differential Scanning Calorimeter TA Instrument; Type of cup: aluminium; Temperature: 150°C; Pressure 500 psi; Tested between March 31 and July 5, 2017 Individual Data Avg. S.D. % CV RESULTS: VISIBLE CHANGES - AFTER 90 DAYS no (yes/no): HP OIT - INITIAL Mass of the test specimen (mg): 5.46 1527 HP OIT (min): HP OIT - AFTER 90 DAYS Mass of the test specimen (mg): 4.97 HP OIT (min): 1 176 Retained value (%): REMARKS: See graphs in appendix.

Prepared by:

Karine Tourchot,

Technician

Approved by: Sylvie Palp

For: Eric Blond, Eng., M.Sc.A. Vice-President

Date: July 6, 2017

**For any information concerning this report, please contact Eric Blond**



Mr Greig Graham							y 6, 201'			
Terrafix Geosynthetic	s Inc.				Report:	SO'	78-087-9	95378A		
IDENTIFICATION: Geomembrane aging: G-1 Roll 5-27654 Project: Terrapure Stoney Creek Landfill, Phase 8 Base Liner and Received: March 28, 2017; PO#: CL1629GG006					achate Collection System					
STANDARD:										
TEST:		ffect of Exposure of Unreinforced Polyolefin Geomembrane Using luorescent UV CondensationApparatus				D723	8-06(201	2)		
TEST CONDITIONS:				ssion to a th	nickne	ess of 0.2.	5 mm) ;			
RESULTS:			Indi	idual Data	A	vg.	S.D.	% CV		
HP OIT - INITIAL										
. Mass of the test specim	nen (mg):	5.46								
. HP OIT (min):		1527								
HP OIT - AFTER 1600h o	f UV									
. Mass of the test specim		5.25	5.61	5.32	5.3	39	0.19	3.5		
. HP OIT (min):		1285	1308	1340	1 31	11	28	2.1		
. Retained value (%):		85.9								
REMARKS: Se	ee graphs in appendix									

Prepared by:

Ma Cual- Cual-

Karine Tourchot,
Technician

Approved by: Sylvie Palpe

For: Eric Blond, Eng., M.Sc.A.

Vice-President

Date: July 6, 2017

**For any information concerning this report, please contact Eric Blond**

Sample: G1 Roll 5-27654

Size: 5.4600 mg Method: HP Oxygen induction time Comment: (S078-87-95378)

DSC

File: C:...\S078-87\G1 Roll 5-27654 HP.003

Operator: Karine Tourchot

Run Date: 31-Mar-2017 14:36 Instrument: DSC Q20P V24.11 Build 124



Sample: G1 Roll 5-27654 after 90 days

Size: 4.9700 mg

Method: HP Oxygen induction time Comment: (S078-087-95378)

DSC

File: ...\G1 Roll 5-27654 after 90 days HP.001

Operator: Karine Tourchot Run Date: 03-Jul-2017 10:30



Sample: G1 Roll 5-27654 after 90 days

Size: 5.3100 mg

Method: HP Oxygen induction time Comment: (S078-087-95378)

DSC

File: ...\G1 Roll 5-27654 after 90 days HP.002

Operator: Karine Tourchot Run Date: 04-Jul-2017 09:52



Sample: G1 Roll 5-27654 after 90 days

Size: 5.0400 mg Method: HP Oxygen induction time Comment: (S078-087-95378)

DSC

File: ...\G1 Roll 5-27654 after 90 days HP.003

Operator: Karine Tourchot Run Date: 05-Jul-2017 11:26



Sample: G1 Roll 5-27654 after 1600H

Size: 5.2500 mg

Method: HP Oxygen induction time Comment: (S078-087-95378)

DSC

File: C:...\G1 Roll 5-27654 after 1600H HP.001

Operator: Karine Tourchot Run Date: 26-Jun-2017 11:29



Sample: G1 Roll 5-27654 after 1600H

Size: 5.6100 mg
Method: HP Oxygen induction time
Comment: (S078-087-95378)

DSC

File: C:...\G1 Roll 5-27654 after 1600H HP.002

Operator: Karine Tourchot Run Date: 27-Jun-2017 13:46



Sample: G1 Roll 5-27654 after 1600H

Size: 5.3200 mg Method: HP Oxygen induction time Comment: (S078-087-95378)

DSC

File: C:...\G1 Roll 5-27654 after 1600H HP.003

Operator: Karine Tourchot Run Date: 29-Jun-2017 09:05



Appendix E2.1 Letter from the Manufacturer





# MATERIAL CONFORMITY CERTIFICATE ISSUED BY THE MANUFACTURER

Varennes, August 30th, 2017

Project Name: Stoney Creek LF - Hamilton, ON

Customer PO: CL1629 - Terrapure

Solmax Order: 110218

ATTN: Mr. Greig Graham

To whom it may concern,

Solmax International hereby certifies that 1030510 (HDPE 2.00 mm White Reflective Textured) geomembrane supplied for the above-mentioned project complies with the following project's specifications:

Oven aging

(% retained after 90 days) ASTM D5721

HPOIT (min.avg) ASTM D5885 80 %

UV resistance

(% retained after 1,600 hrs) GRI-GM11/ASTM D7238
HP OIT (min.avg) ASTM D5885 50 %

You will find attached test report on roll produced using the same resin formulation that has been used to manufacture the above product.

Hoping the above information is satisfactory. Please, do not hesitate to contact us if you require any additional information.

Simon Gilbert St-Pierre, Eng.

Technical Manager
Solmax International Inc.



### **TECHNICAL DATA SHEET**

HDPE Series, 2.00 mm

White Reflective, Textured

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tel.: (450) 929-1234 Fax: (450) 929-2550 www.solmax.com

PROPERTY	TEST METHOD	FREQUENCY (1)	<b>UNIT</b> Metric	1030510
SPECIFICATIONS				
Nominal Thickness	-	-	mm	2.00
Thickness (min. avg.)	ASTM D-5994	Every roll	mm	2.00
Lowest ind. for 10 out of 10 val	ues		mm	1.80
Asperity Height (min. avg.) (3)	ASTM D-7466	Every roll	mm	0.40
Resin Density	ASTM D-1505	1/Batch	g/cc	> 0.932
Melt Index - 190/2.16 (max.)	ASTM D-1238	1/Batch	g/10 min	1.0
Sheet Density (8)	ASTM D-792	Every 10 rolls	g/cc	≥ 0.940
Carbon Black Content (9)	ASTM D-4218	Every 2 rolls	%	2.0 - 3.0
Carbon Black Dispersion	ASTM D-5596	Every 10 rolls	Category	Cat. 1 / Cat. 2
OIT - standard (avg.)	ASTM D-3895	1/Batch	min	100
Tensile Properties (min. avg) (2)	ASTM D-6693	Every 2 rolls		
Strength at Yield			kN/m	31
Elongation at Yield			%	13
Strength at Break			kN/m	31
Elongation at Break			%	150
Tear Resistance (min. avg.)	ASTM D-1004	Every 5 rolls	N	265
Puncture Resistance (min. avg.)	ASTM D-4833	Every 5 rolls	N	675
Dimensional Stability	ASTM D-1204	Certified	%	± 2
Stress Crack Resistance (SP-NCTL)	ASTM D-5397	1/Batch	hr	500
Oven Aging - % retained after 90 days	ASTM D-5721	Per formulation (5)		
HP OIT (min. avg.)	ASTM D-5885		%	80
UV Resistance - % retained after 1600	hr GRI-GM-11	Per formulation (5)		
HP-OIT (min. avg.)	ASTM D-5885		%	50
SUPPLY SPECIFICATIONS	Roll dimensions may vary :	±1%)		
Roll Dimension - Width	-		m	6.80
Roll Dimension - Length	-		m	128.0
Area (Surface/Roll)	-		$m^2$	870.4
Color (one side) (4)	-	-		White

MF-CQ-34 (Rev. 03 / 2016-07-28) Revision Date: 2016-12-14

### **NOTES**

- 1. Testing frequency based on standard roll dimensions and one batch is approximately 180,000 lbs (or one railcar).
- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.
- 3. Lowest individual and 8 out of 10 readings as per GRI-GM13 / 17, latest version.
- 4. Black or grey spots may be visible on the textured surface. Smooth edge may not have the same consistent shade of color as the membrane itself. The colored layer may cause the carbon black content results to be higher than 3%.
- 5. Certified by core (black) formulation on geomembrane roll or molded plaque.
- 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
- 9. Correlation table is available for ASTM D1603 vs ASTM D4218. Both methods give the same results.
- * All values are nominal test results, except when specified as minimum or maximum.
- * The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.

MF-CQ-34 (Rev. 03 / 2016-07-28) Revision Date: 2016-12-14



### **GEOMEMBRANE TEST RESULTS**

GAI LAP Accreditation No.: 51-05

Date Certification:

2016-03-21

Technical Department - Canada Report No.: HD27-13 - 2016

Identification:

Type of Material : HDPE Formulation : HD27-13

Roll Number: 2-80555 Resin Type : Formosa HL3812

Production Date : 2015-05-01 Lot Number : 15C1219

Oxidative Induction Time (ASTM D3895)

 Individual Data
 Avg.
 S.D.
 % CV

 OIT (minutes)
 210
 217
 214
 5
 2.4

High Pressure Oxidative Induction Time (ASTM D5885)

| Individual Data | Avg. S.D. % CV | HP OIT (minutes) | 1816 | 1693 | 1754 | 87 | 5.0

### UV Resistance (ASTM D7238)

• The resistance to degradation was determined in accordance with ASTM D7238;

Apparatus used: Q-PANEL QUV/se - Lamp: UVA-340;

• Duration of the test: 1600 hours of UV exposure (total of 1920h);

• Cycle: 80 cycles of UVA (20h of light at 75°C followed by 4h of condensation at 60°C)

HP OIT (minutes): ASTM D5885 - Initial

HP OIT (minutes): ASTM D5885 - After 1600h of UV

PERCENTAGE RETAINED: 89 %

In	ndividual Dat	Avg.	S.D.	% CV
1816	1693	1754	87	5.0
1489	1639	1564	106	6.8

Note: No visual change after 1600 hrs

### Air-Oven Aging (ASTM D5721)

• The resistance to degradation was determined in accordance with ASTM D5721;

Duration of the test: The geomembrane was exposed to 90 days in an air oven maintened at 85°C ± 0.5°C;

Rotation of the exposed specimens : once per wee

OIT (minutes): ASTM D3895 - Initial
OIT (minutes): ASTM D3895 - After 90 days of Oven Aging

In	dividual Dat	а	Avg.	S.D.	% CV	
210	217		214	5	2.4	
104	107		105	2	1.5	

PERCENTAGE RETAINED: 49 %

	individuai Data			AVg.	S.D.	% C V	
HP OIT (minutes): ASTM D5885 - Initial	1816	1693		1754	87	5.0	
HP OIT (minutes): ASTM D5885 - After 90 days of Oven Aging	1398	1447		1422	34	2.4	
				•			

PERCENTAGE RETAINED: 81 % Note: No visual change after 90 days

The tests were performed by Solmax International. The laboratories of Solmax International are accredited by the GRI.

Simon Gilbert St-Pierre, Eng.

**Technical Services** 



FORMOSA PLASTICS CORPORATION, TEXAS

201 FORMOSA DRIVE

PO BOX 700 POINT COMFORT

TX 77978

PHONE: (888) FPCUSA3

### Certificate of Analysis

CUSTOMER: SOLMAX INTERNATIONAL INC.

2801 MARIE-VICTORIN

QC J3X 1

S/O NO : EQ4A049 CUSTOMER PO : 113063-0

DATE SHIPPED: 4/15/15

VARENNES PRODUCT :HL3812

LOT NO : 15C1219 WEIGHT (LB) : 192 192,200.00

UTCX059390 RAILCAR

CUSTID: FT03828 SPIDE3

Property	Method	Spec Min	Actual	Spec Max
Melt Index,g/10min	ASTM D1238	.04	.070	.12
HLMI, g/10 min.	ASTM D1238	9	12.5	13
Density, g/cm3	ASTM D1505	.935	.9366	.939

#### Notes:

- * Additive levels were tested and meet the min specification for this lo
- * t. As a result Standard OIT (by ASTM D3895) is greater than 120 mins (
- * nominal values not tested on every lot). As a result, High Pressure OI
- * T (by ASTM D5885) is greater than 1000 mins.

Linda Kas

QC SUPERVISOR



### QUALITY CONTROL REPORT

Roll Certification

Solmax, 2801 Boul. Marie-Victorin, Varennes, Qc, Canada, J3X 1P7 Tél.: 1-450-929-1234 • Fax.: 1-450-929-2547 • www.solmax.com

### **RESIN INFORMATION**

Roll Number : 2-80555

Resine Lot Numbe 15C1219

Resine Type:

Density (g/cc)

Resine Supplier:

**HDPE** / HL3812

Product Code: Solmax 480-2071

**ROLL IDENTIFICATION** 

Production Date 2015-05-01

**Property** 

Results

Length (± 1%):

121.9 meters

**ASTM D 1505** ASTM D 1238 (190/2.16) 0.937

Sheet Area:

Width:

6.80 meters

Melt Index (g/10 min. ESCR (hrs)

Formosa

0.07

829 sq. meters

**ASTM D 5397 ASTM D 3895**  >400 120

1 623 kilograms Weight:

OIT (min.) HP-OIT (min.)

**ASTM D 5885** 

**Test Method** 

Physical Property		Test Method	Test Frequency	Technical Data Metric	Test Results Metric	
Thickness (mm) Average Minimum			ASTM D-5199	1/1 ro	2.03 1.83	2.03 2.01
Asperity (mm)	Averag	e (out / in )	N/A	N/A		1
Tensile properties			ASTM D-6693	1/2 ro		
Yield strength (	kN/m)	TD			31	31.9
		MD				33.2
Yield elongation (%)		TD			13	18.4
		MD				18.3
Break strength (kN/m) TD		TD			57	70.3
		MD				71.7
Break elongation	n (%)	TD			700	883
		MD				848
Tear Resistance (N	N)	TD	ASTM D-1004	1/6 ro	250	291
		MD				272
Puncture Resistance	e (N)		ASTM D-4833	1/6 ro	695	764
Density (g/cc)			ASTM D-1505	1/2 ro	≥ 0.940	0.946
Carbon Black Con	itent (%)		ASTM D-4218	1/2 ro	2.0 - 3.0	2.56
Carbon Black Disp	ersion		ASTM D-5596	1/6 ro	Cat. 1 & Cat. 2	10
Dimensional Stabil	ity (%)	TD	ASTM D-1204	1/6 ro	± 2	0.01
		MD				-0.30

### **GEOMEMBRANE CERTIFICATION**

Physical Property	Test Method	Test Frequency	Test Result
Oven Aging - % retained after 90 days	ASTM D-5721	1/Form	
HP OIT (min. avg.)	ASTM D-5885	;	> 80
UV Resistance - % retained after 1600 hr HP-OIT (min. avg.)	GRI-GM-11 ASTM D-5885	1/Form	> 50





November 9th, 2017

Mr. Greig Graham Terrafix Environmental Technology Inc. Toronto, ON

Ref. Phase 8 Base Liner and Leachate Collection System
Terrapure Stoney Creek Landfill
Cold Weather Conditions for HDPE Liner Seaming

Dear Greig,

Please accept this letter as a confirmation that Solmax accept the welding of our HDPE Geomembrane at temperature below 0 degree C according the GRI-GM9.

We hope this information will prove satisfactory.

Sincerely yours,

Paul Payeur Sales Manager – Americas Solmax

Appendix F Laboratory Hydraulic Conductivity Test Results



					(ASTM D5084)	
CLIENT:		Terrapur	e Environmental	LAB No.:	WLB-1329-1	
PROJECT/ SITE:	Terrapure		ek Landfill, 65 Green Mountain W, Hamilton	_ PROJECT	<b>No.:</b> 11103232	
Sample Location: -		Sampled By:		Client		
Sample Height/Depth:		-	Date Sampled:		-	
Sample Identification:		1A	Date Tested:	Oc	ct 4 - Oct 10, 2017	
	Meth	od C- Fallir	ng Head, Rising Tailwater Ele	vation		
	Sample De	escription:	silty CLAY, trace sand, tra	ce gravel		
Specimen Parameters	Initial	Final	Pe	rmeation Cond	lition	
Diameter, cm	3.79		Cell Pressure, I	кРа	400.1	
Length, cm	3.97		Head Pressure,	kPa	389.0	
Volume, cm ³	44.7		Back Pressure,	kPa	379.4	
Wet Mass, g	94.6		B - Value		0.98	
Dry Density, kg/m ³	1786	1790	Effective Consolidation P	Effective Consolidation Pressure, kPa		
Moisture, %	18.5	19.4	Volume under Steady	Volume under Steady Flow, cm ³		
Specific Gravity	2.75		Hydraulic Gradie	ent, i	24.6	
Degree of Saturation, %	94	100	Hydraulic Conductivity,	k _{20,} cm/sec	1.4E-08	
Largest Particle Size, mm	4.	75				
0.75 (Emantity of Flow (Cm3) (	1500		2500 3000 3500  Time (min)  Project specifications	2.0 1.0 0.0	E-07  Hydraulic Conductivity, k20  E-07  E-07  E-07  E-07  Corrected Hydraulic Conductivity, k20  E-07  E-07	
PERFORMED BY:		Casey Ad	achi DATE:	Oc	t 4 - Oct 10, 2017	
VERIFIED BY:	[	Michael Brav	rerman DATE:	October 11, 2017		



					(ASTM D5084)	
CLIENT:		Terrapur	e Environmental	_ LAB No.:	WLB-1329-2	
PROJECT/ SITE:	Terrapure		ek Landfill, 65 Green Mountain W, Hamilton	_ PROJECT	No.: 11103232	
Sample Location:		-	Sampled By:		Client	
Sample Height/Depth:		-	Date Sampled:		-	
Sample Identification:		2A	Date Tested:	O	ct 4 - Oct 10, 2017	
	Meti	nod C- Fallir	ng Head, Rising Tailwater Ele	evation		
	Sample De	escription:	silty CLAY, trace sand, tra	ce gravel		
Specimen Parameters	Initial	Final	Pe	rmeation Cond	dition	
Diameter, cm	3.80		Cell Pressure, I	kPa	400.1	
Length, cm	3.97		Head Pressure,	kPa	391.5	
Volume, cm ³	45.0		Back Pressure,	kPa	379.9	
Wet Mass, g	97.0		B - Value		0.97	
Dry Density, kg/m ³	1820	1820	Effective Consolidation P	Effective Consolidation Pressure, kPa		
Moisture, %	18.5 18.6		Volume under Steady	Volume under Steady Flow, cm ³		
Specific Gravity	2.75		Hydraulic Gradie	Hydraulic Gradient, i		
Degree of Saturation, %	99	100	Hydraulic Conductivity	, k _{20,} cm/sec	1.5E-08	
Largest Particle Size, mm	4.	75				
2.00 (Ematrix of Flow (Cma) words 1.00 0.50 0.00 500 1000	1500  The materia		2500 3000 3500 Fime (min)  Droject specifications.	2.0	PE-07  OE-07  OE-08  OE-07  OE	
PERFORMED BY:		Casey Ad	achi DATE:	Oc	t 4 - Oct 10, 2017	
VERIFIED BY:		Michael Brav	verman DATE:	October 11, 2017		



							(ASTM D5084)	
CLIENT:		Terrapure	e Environr	mental	LAB No.:	_	WLB-1329-3	
PROJECT/ SITE:  Terrapure - Stoney Creek La Road W, H					PROJECT	PROJECT No.: 1110323		
Sample Location:		-		Sampled By:		Clie	ent	
Sample Height/Depth:		-		Date Sampled:		-		
Sample Identification:		3A		Date Tested:	0	ct 4 - Oct	: 10, 2017	
	Meth	nod C- Fallir	ng Head,	Rising Tailwater Ele	evation			
	Sample De	escription:	silty	CLAY, trace sand, tra	ce gravel	]		
Specimen Parameters	Initial	Final		Pe	rmeation Cond	dition		
Diameter, cm	3.79			Cell Pressure,	kPa		400.5	
Length, cm	4.00			Head Pressure,	kPa		391.7	
Volume, cm ³	45.1			Back Pressure,	kPa		379.9	
Wet Mass, g	96.9			B - Value			0.91	
Dry Density, kg/m ³	1835	1835	Ef	Effective Consolidation Pressure, kPa			18.60	
Moisture, %	17.1	18.1		Volume under Steady Flow, cm ³		0.8		
Specific Gravity		75		Hydraulic Gradie			30.1	
Degree of Saturation, %  Largest Particle Size, mm		100 75	H	Hydraulic Conductivity,			8.8E-09	
1.00 0.80 0.80 0.60 0.40 0.20 0.00 0 500	1000 150  The materia		2500 Fime (min)		6.C 4.C 2.C	DE-07  Hydraulic Conductivity, k20 (cm/sec)	Q- Inflow  Q- Outflow  Corrected Hydraulic Conductivity, k20	
PERFORMED BY:		Casey Ad	achi	DATE:	O	t 4 - Oct	10, 2017	
VERIFIED BY:	Michael Braverman			DATE:	October 11, 2017			



							(ASTM D5084)
CLIENT:		Terrapure	e Env	ironmental	_ LAB No.:	_	WLB 1367-1
PROJECT/ SITE:	Terrapure			ndfill, 65 Green Mountain amilton	_ PROJECT	No.: _	11103232
Sample Location:		-		Sampled By:		-	
Sample Height/Depth:		-		Date Sampled:		-	
Sample Identification:		4A		Date Tested:	De	cember 4	4 - 8, 2017
	Meti	nod C- Fallir	ng He	ead, Rising Tailwater Ele	vation		
	Sample De	escription:		Lean clay with sand	(CL)		
Specimen Parameters	Initial	Final		Pe	rmeation Cond	dition	
Diameter, cm	5.09			Cell Pressure, I	кРа		215.0
Length, cm	5.84			Head Pressure,	kPa		203.8
Volume, cm ³	118.8			Back Pressure,	kPa		188.7
Wet Mass, g	252.1			B - Value			0.99
Dry Density, kg/m ³	1760	1771		Effective Consolidation P	ressure, kPa		24.30
Moisture, %	20.6	20.1		Volume under Steady Flow, cm ³		1.2	
Specific Gravity		75		Hydraulic Gradient, i			26.4
Degree of Saturation, %		100		Hydraulic Conductivity, $k_{20}$ , cr			1.3E-08
Largest Particle Size, mm	4.	75					
1.50					1.5	SE-07	- → - Q - Inflow
Onautity of Flow (cm3) 0.75 0.50		*****	,			80-30 Wydraulic Conductivity, k <i>20</i> (cm/sec)	Q- Outflow  Corrected Hydraulic
0.25	1000	1500 Elapsed	Γime (	2000 2500 min)	3000	00+30 Hydrau	Conductivity, k20
REMARKS:	The materia	al meets the p	orojec	et specifications			
PERFORMED BY:		Casey Ad	achi	DATE:	Dec	cember 4	4 - 8, 2017
VERIFIED BY:	Michael Braverman		an <b>DATE</b> :		December 13, 2017		



								(ASTM D5084)
CLIENT:	_	Terrapure	e Enviro	nmental		LAB No.:	_	WLB 1367-2
PROJECT/ SITE:	Terrapure		ek Landf W, Ham	ill, 65 Green Moun ilton	ntain	PROJECT	No.: _	11103232
Sample Location:		-		Sampled	d By:		-	
Sample Height/Depth:		_		Date Samp	oled:		-	
Sample Identification:		5A		Date Tes	sted:	De	cember	4 - 8, 2017
	Meti	nod C- Fallir	ng Head	, Rising Tailwat	er Elev	ation		
	Sample De	escription:		Lean clay with	sand (0	CL)	]	
Specimen Parameters	Initial	Final			Peri	meation Cond	dition	
Diameter, cm	5.07			Cell Pres	sure, kl	Pa		315.0
Length, cm	5.93			Head Pres	ssure, k	:Pa		303.2
Volume, cm ³	119.5			Back Pres	ssure, k	Pa		288.0
Wet Mass, g	244.5			B - Value				0.98
Dry Density, kg/m ³	1730	1733	E	Effective Consolidation Pro		essure, kPa		25.00
Moisture, %	18.3	21.3		Volume under Steady Flow, cm ³		2.9		
Specific Gravity	2.	75		Hydraulic Gradient, i			26.1	
Degree of Saturation, %	85	100	ı	Hydraulic Conductivity, $k_{20}$ , cm/se		k _{20,} cm/sec		3.3E-08
Largest Particle Size, mm	4.	75						
3.50 3.00 (Cm) (Cm) (Cm) (Cm) (Cm) (Cm) (Cm) (Cm)	1000	1500 Elapsed	20	000 25		2.5 2.0 1.5 1.0	Hydraulic Conductivity, k20 (cm/sec)	Q- Inflow  Q- Outflow  Corrected Hydraulic Conductivity, k20
REMARKS:	The materia	al meets the p	oroject s	pecifications				
PERFORMED BY:		Casey Ad	achi	DATE	:	Dec	cember	4 - 8, 2017
VERIFIED BY:		Michael Braverman		DATE	DATE: De		ecember 13, 2017	



								(ASTM D5084)
CLIENT:		Terrapur	e Environr	mental		LAB No.:		WLB 1367-3
PROJECT/ SITE:	Terrapure		ek Landfill W, Hamilt	, 65 Green Mour con	ntain	PROJECT	No.:	11103232
Sample Location:		-		Sample	d By:		-	
Sample Height/Depth:	i <u></u>	-		Date Sam	pled:		-	
Sample Identification:		6A		Date Te	sted:	De	cember 4	4 - 8, 2017
-	Met	hod C- Fallir	ng Head,	Rising Tailwat	ter Elev	ation		
	Sample D	escription:		Lean clay with	sand (0	CL)		
Specimen Parameters	Initial	Final			Perr	neation Cond	dition	
Diameter, cm	5.09			Cell Pres	ssure, kF	Pa		215.0
Length, cm	5.95			Head Pre	ssure, k	Pa		203.3
Volume, cm ³	121.1			Back Pre	ssure, k	Pa		188.8
Wet Mass, g	255.4			B - '	Value			0.98
Dry Density, kg/m ³	1793	1800	Ef	fective Consolid	ation Pro	essure, kPa		24.20
Moisture, %	17.6	19.3		Volume under Steady F		low, cm ³	·	
Specific Gravity	2.	75	Hydraulic Gradier		nt, <i>i</i>		24.8	
Degree of Saturation, %		100	Hy	ydraulic Condu	ctivity, I	k _{20,} cm/sec		1.4E-08
Largest Particle Size, mn	1 4.	75					E-07	
1.50  (cm3)  1.00  1.00  1.00  0.75  0.50		<b>*</b>				1.3	Hydraulic Conductivity, k20 (cm/sec)	— Q - Inflow  — Q- Outflow  — Corrected Hydraulic
0.50 0.25 0.00	1000	1500 Elapsed	200 Time (min)		500	2.5	E-08 80-3E	Conductivity, k20
REMARKS:	The materia	al meets the p	project sp	ecifications				
PERFORMED BY:		Casey Ad	achi	DATE	i .	Dec	ember -	4 - 8, 2017
VERIFIED BY:		Michael Brav	/erman	DATE	<u>:</u>	De	cember	· 13, 2017



									(ASTM D5084)
CLIENT:	-		Terrapure	e En	vironmental		LAB No.:		WLB 1367-4
PROJEC	T/ SITE:	Terrapure			andfill, 65 Green Mour Hamilton	ntain	PROJECT	No.: _	11103232
Sample L	ocation:		-		Sample	d By:		-	
Sample H	eight/Depth:		-		Date Sam	pled:		_	
Sample Io	dentification:		7A		Date Tes	sted:	D	ecember	· 4 - 8, 17
		Meth	nod C- Fallir	ng H	lead, Rising Tailwat	er Elev	/ation		
		Sample De	escription:		Lean clay	(CL)			
Specimer	n Parameters	Initial	Final			Per	meation Cond	dition	
Dian	neter, cm	5.14			Cell Pres	ssure, kl	Pa		315.0
Ler	ngth, cm	5.92			Head Pre	ssure, k	Ра		303.5
Volu	ıme, cm³	123.0			Back Pre	ssure, k	:Pa		287.8
Wet	Mass, g	252.5			B - \	√alue			0.98
Dry De	nsity, kg/m ³	1740	1745		Effective Consolida	ation Pr	essure, kPa		25.20
Moi	sture, %	18.0	21.0		Volume under Steady Flor		Flow, cm ³		1.1
Speci	fic Gravity	2.	75		Hydraulic Gradien		nt, <i>i</i>		27.0
Degree of	Saturation, %	85	100		Hydraulic Conductivity, k		k _{20,} cm/sec		1.2E-08
Largest Pa	article Size, mm	4.	75						
1.50						+	3.0	)E-07 <b>(sec)</b>	- → Q - Inflow
Onautity of Flow (cm3)  Onautity of Flow (cm3)			*****	•••				LO-30 LO-30 <b>Lydraulic Conductivity, k<i>20</i> (cm/sec</b> )	Q- Outflow  Corrected Hydraulic
0.25	) 1	000	1500 Elapsed	Time		00	0.C 3000	00+30 Hydran	Conductivity, k20
REMARK	(S:	The materia	I meets the p	proje	ect specifications				
PERFOR	MED BY:		Casey Ad	achi	DATE	:	De	ecember	4 - 8, 17
VERIFIEI	D BY:	1	Michael Brav	/erm	nan <b>DATE</b>	: <u>.</u>	De	ecember	13, 2017



							(ASTM D5084)
CLIENT:		Terrapure	e Env	ironmental	LAB No.:	_	WLB 1367-5
PROJECT/ SITE:	Terrapure			ndfill, 65 Green Mountain amilton	PROJECT No.:		11103232
Sample Location:		-		Sampled By:		-	
Sample Height/Depth:		-		Date Sampled:		-	
Sample Identification:		8A		Date Tested:	De	ecember	4 -8, 2017
-	Meth	nod C- Fallir	ng He	ead, Rising Tailwater Elev	vation		
	Sample De	escription:		Lean clay with sand (	CL)		
Specimen Parameters	Initial	Final		Per	meation Cond	dition	
Diameter, cm	5.15			Cell Pressure, k	Pa		315.0
Length, cm	6.01			Head Pressure, I	кРа		303.9
Volume, cm ³	125.2			Back Pressure, k	Ра		288.5
Wet Mass, g	256.4			B - Value			0.98
Dry Density, kg/m ³	1777	1780		Effective Consolidation Pr	essure, kPa		24.50
Moisture, %	15.2	19.8		Volume under Steady I	Flow, cm ³	ow, cm ³ 2.0	
Specific Gravity	2.	75	Hydraulic Gradie		nt, <i>i</i> 26.1		26.1
Degree of Saturation, %	77	100		Hydraulic Conductivity,	k _{20,} cm/sec		2.5E-08
Largest Particle Size, mm	4.	75					
3.00 2.50 (£) 2.00 Non 1.50 0.50 0.00 500  REMARKS:	1000 The materia	1500 Elapsed 1	Time (	2000 2500 (min)	2.5 2.0 1.5 1.0	DE-07 DE-07 DE-07 DE-07 DE-07 DE-07 DE-07 DE-08 DE-08 DE+00	Q- Inflow  Q- Outflow  Corrected Hydraulic Conductivity, k20
-							
PERFORMED BY:		Casey Ada	achi	DATE:	De	cember	4 -8, 2017
VERIFIED BY:		Michael Brav	<u>er</u> ma	n DATE:	De	ecember	13, 2017



								(A31W D3004)
CLIENT:		Terrapure	Environ	mental		LAB No.:		WLB 1367-6
PROJECT/ SITE:	Terrapure		ek Landfil W, Hami	I, 65 Green Mou Iton	ntain	PROJECT	No.: _	11103232
Sample Location:		-		Sample	d By:		-	
Sample Height/Depth:		-		Date Sam	pled:			
Sample Identification:		9A		Date Te	sted:	Dec	ember 1	5 -19, 2017
_	Meth	nod C- Fallir	g Head,	Rising Tailwa	ter Elev	ation		
	Sample De	escription:		Lean clay with	sand (	CL)		
Specimen Parameters	Initial	Final			Peri	meation Cond	dition	
Diameter, cm	5.04			Cell Pre	ssure, kl	Pa		415.5
Length, cm	5.99			Head Pre	essure, k	(Pa		403.7
Volume, cm ³	119.5			Back Pre	essure, k	:Pa		388.1
Wet Mass, g	248.6			В-	Value		0.98	
Dry Density, kg/m ³	1746	1755	E	Effective Consolidation Pressure, kPa		essure, kPa	25.40	
Moisture, %	19.1	20.7		Volume under Steady Flow,			2.1	
Specific Gravity		75		Hydraulic Gradient				26.6
Degree of Saturation, %	92	100	Н	Hydraulic Conductivity, $k_{20}$		k _{20,} cm/sec		2.2E-08
Largest Particle Size, mm	4.	75						
	000 The materia	1500 Elapsed 1	20 ime (min	)	500	1.5 1.0 5.0	DE-07  DE-07  DE-07  DE-08  DE-08  DE-08  DE-08  DE-09  DE-08	Q- Inflow  Q- Outflow  Corrected Hydraulic Conductivity, k20
PERFORMED BY:		Casey Ada		DATE				5 -19, 2017
VERIFIED BY:		Michael Brav	erman	DATE	Ξ:	De	ecember	22, 2017

Appendix G Field Inspection Records



Job Number:	11103232	Date:	15 September, 2017
Owner:	Terrapure Environmental		
Job Name:	Phase 8A Geotextile Seam Test Pit		
Contractor:	Dufferin		
Inspected By:	Peter Lesieczko	Weather:	27°C, Sunny

Type of Inspection: Geotextile seam test pit below hydraulic control layer, visual inspection

**Location:** Phase 8A – N1300, E1050

**Description:** A test pit, approximately 0.75 m x 0.75 m, was excavated and then hand dug in the 2" clear stone of the hydraulic control layer to expose the underlying Type A geotextile.

- No foreign objects were observed in the stone, and the geotextile was in good condition, with no visible damage to the material or seams.
- The excavation was backfilled, compacted and re-graded in accordance with the specifications.





Job Number:	11103232	Date:	10 October 2017
Owner:	Terrapure Environmental		
Job Name:	Phase 8A Geotextile Seam Test Pit		
Contractor:	Dufferin		
Inspected By:	Peter Lesieczko	Weather:	22°C, Clear sky

Type of Inspection: Geotextile seam test pit below leachate collection layer, visual inspection

**Location:** Phase 8A – N1325, E1150

**Description:** A test pit, approximately 1 m x .3 m, was hand dug in the 19 mm clear stone of the leachate control layer to expose the underlying Type B geotextile.

- No foreign objects were observed in the stone, and the geotextile was in good condition, with no visible damage to the material or seams.
- The excavation was backfilled, compacted and re-graded in accordance with the specifications.





Job Number:	11103232	Date:	25 September, 2017		
Owner:	Terrapure Environmental				
Job Name: Phase 8A Geotextile Seam Test Pit on top of HCL  Contractor: Dufferin					

Type of Inspection: Geotextile seam test pit below primary clay liner, visual inspection

**Location:** Phase 8A – N1325, E1175

**Description:** A test pit was conducted in the Primary Clay Liner to expose the Geotextile A. Approximately 0.5 m x 0.5 m was excavated on the surface layer and then hand dug down to the Geotextile A.

- Two (2) small cobblestones were found in the bottom lift and removed before backfilling. Increased effort in stone picking was implemented, added additional personnel to stone picking, and added scarification method to comb through placed material.
- The geotextile was observed to be in good condition, with no visible damage to the material or seams.
- The excavation was backfilled, compacted and re-graded in accordance with the specifications.





Job Number:	11103232	Date:	November 7 th , 2017					
Owner:	Terrapure Environmental							
Job Name:	Phase 8A Primary Clay Liner Test Pi	t - #2						
Contractor:	Dufferin							
Inspected By:	Peter Lesieczko	Weather:	9°C, Sunny with some clouds					

Type of Inspection: Primary clay liner test pit, visual inspection

Location: Phase 8A - N1314.494, E1087.445

**Description:** An excavator was used to remove the top 3 lifts (600 mm) of compacted Primary Clay Liner. The area excavated was 2 m by 2 m. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts.
- No gravel was found.
- The clay was dark brown and moist.
- One (1) cobble (<50 mm) was found on the bottom lifts of the clay liner. The cobble was removed prior to backfilling. Increased effort in stone picking was implemented.
- Test pit corresponds to the location for Shelby Tube Set #6.
- The PCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.





Job Number:	11103232	Date:	November 7 th , 2017					
Owner:	Terrapure Environmental							
Job Name:	Phase 8A Primary Clay Liner Test Pit	t - #3						
Contractor:	Dufferin							
Inspected By:	Peter Lesieczko	Weather:	9°C, Sunny with some clouds					

Type of Inspection: Primary clay liner test pit, visual inspection

**Location:** Phase 8A - N1373, E1289

**Description:** An excavator was used to remove approximately the top 2 lifts (400 mm) of compacted Primary Clay Liner. The area excavated was 4 m by 2 m. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts. The surface layer appeared homogenous with the bottom lifts of clay.
- No gravel was found.
- The clay was dark brown and moist.
- Test pit corresponds to the location for Shelby Tube Set #9 and the second set of permeameters.
- The PCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.





Job Number:	11103232	Date:	October 31 st , 2017			
Owner:	Terrapure Environmental					
Job Name: Phase 8A Primary Clay Liner Test Pit						
Contractor:	Dufferin					
Inspected By:	Peter Lesieczko	Weather:	8°C, Sunny with some clouds			

Type of Inspection: Primary clay liner test pit, visual inspection

**Location:** Phase 8A – N1350, E1275

**Description:** An excavator was used to remove the top 2.5 lifts (500 mm) of compacted Primary Clay Liner. The area excavated was 2 m by 2 m. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts.
- No gravel was found.
- The clay was dark brown and moist.
- One (1) cobble (<50 mm) was found on the bottom lifts of the clay liner. The cobble was removed prior to backfilling. Increased effort in stone picking was implemented.
- Test pit corresponds to the location for Shelby Tube Set #5.
- The PCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.





Job Number:	11103232	Date:	September 27 th , 2017		
Owner:	Terrapure Environmental				
Job Name: Phase 8A Secondary Clay Liner Test Pit - #2					
Contractor:	Dufferin				
Inspected By:	Peter Lesieczko	Weather:	25°C, Sunny		

Type of Inspection: Secondary clay liner test pit, visual inspection

**Location:** Phase 8A - N1316, E1190

**Description:** An excavator was used to remove the top 3-4 lifts (600 mm -800 mm) of compacted Secondary Clay Liner. The pit was 1 meter by 1 meter. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts.
- No gravel was found.
- The clay was dark brown and moist.
- One (1) cobble (approximately 50 mm in size) was found on the bottom lifts of the clay liner. The cobble was removed prior to backfilling. Increased effort in stone picking was enforced.
- Test pit corresponds to the location for Shelby Tube Set #3 and permeameter set #2 for Secondary Clay Liner.
- The SCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.





Job Number:	11103232	Date:	October 16th, 2017		
Owner:	Terrapure Environmental				
Job Name: Phase 8A Secondary Clay Liner Test Pit - #3					
Contractor:	Dufferin				
Inspected By:	Peter Lesieczko	Weather:	12°C, Clear sky		

Type of Inspection: Secondary clay liner test pit, visual inspection

**Location:** Phase 8A - N1354.53, E1265.82

**Description:** An excavator was used to remove the top 3 lifts (600 mm) of compacted Secondary Clay Liner. The pit was 1 meter by 1 meter. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts.
- No gravel was found.
- The clay was dark brown and moist.
- No cobbles were found on the bottom lifts of the clay liner.
- Test pit corresponds to the location for permeameter set #3 for secondary clay liner.
- The SCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.





Job Number:	11103232	Date:	September 15 th , 2017
Owner:	Terrapure Environmental	_	
Job Name:	Phase 8A Secondary Clay Liner Tes	t Pit	
Contractor:	Dufferin		
Inspected By:	Peter Lesieczko	Weather:	27°C, Sunny

Type of Inspection: Secondary clay liner test pit, visual inspection

**Location:** Phase 8A - N1300, E1025

**Description:** An excavator was used to remove the top 3-4 lifts (600 mm -800 mm) of compacted Secondary Clay Liner. A shovel was used to remove loose clay from the sides of the excavation. The uniformity of the clay material was observed and checked for deficiencies:

- The clay appeared to be homogenous with no stratification observed between the different lifts.
- No gravel was found.
- The clay was dark brown and moist.
- Two (2) cobbles were found on the bottom lifts of the clay liner. The cobbles were removed prior to backfilling. Increased effort in stone picking was implemented, added additional personnel to stone picking, and added scarification method to comb through placed material.
- Test pit corresponds to the location for Shelby Tube Set #1.
- The SCL passed inspection within this area.
- The hole was then backfilled, compacted in lifts, benched into the surrounding liner and re-graded as per the drawings and specifications.



Appendix H	
In-situ Hydraulic Conductivity Test Results	

Appendix H1 Permeameter Results for the Primary Clay Liner

CLIENT: PROJECT: Terrapure Environmental

Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT: Phase 8A SET #: 1 - PCL PERMEAMETER #: A1 NORTHING: 1298.38 EASTING: 1108.27

#### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:
Internal diameter of tube, d = <u>Calculated Parameters:</u> Geometric Constant, G1 = 0.61044968 (in mm) for pervious lower boundary (a = -1) 15 (mm) 101 (mm) Depth of Clay below bottom of casing, b1 = 623 Head at time t, Ht = Ra + R + 20xD (all in mm) Internal diameter of casing, D = Depth of casing base below ground, Z = 377 (mm) Reference point of scale above ground, Ra = 135 (mm) H2' = H2 - cDepth of Clay Liner = 1000 (mm)

Reading to be recorded in all rows:

- 1. Date, and time (in minutes)
- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
  3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
28-Sep-17	2:21	0	600	-	2755	-	600	0	-	-	19	0.0	
28-Sep-17	2:47	26	588	2755	2743	1.71E-07	598	-2	2745	1.42E-07	19	0.4	
28-Sep-17	3:42	55	570	2743	2725	1.22E-07	597	-1	2726	1.15E-07	19	1.4	Bulldozer was fine grading a few meters away
28-Sep-17	4:04	22	563	2725	2718	1.19E-07	595	-2	2720	8.49E-08	19	1.7	Bulldozer was fine grading a few meters away
28-Sep-17	4:24	20	560	2718	2715	5.62E-08	597	2	2713	9.37E-08	19	2.1	Bulldozer was fine grading a few meters away
29-Sep-17	8:22	1678	399	2715	2554	3.71E-08	591	-6	2560	3.56E-08	13	30.0	
29-Sep-17	9:36	74	390	2554	2545	4.85E-08	591	0	2545	4.85E-08	13	31.3	
29-Sep-17	9:59	23	387	2545	2542	5.22E-08	590	-1	2543	3.48E-08	13	31.6	
29-Sep-17	10:27	28	385	2542	2540	2.86E-08	590	0	2540	2.86E-08	13	32.1	
29-Sep-17	12:08	101	373	2540	2528	4.77E-08	588	-2	2530	3.97E-08	14	33.8	
29-Sep-17	13:45	97	363	2528	2518	4.16E-08	587	-1	2519	3.74E-08	16	35.4	
2-Oct-17	8:30	4005	65	2518	2220	3.20E-08	575	-12	2232	3.06E-08	10	102.2	
2-Oct-17	9:05	35	63	2220	2218	2.62E-08	574	-1	2219	1.31E-08	11	102.7	
2-Oct-17	9:38	33	60	2218	2215	4.17E-08	574	0	2215	4.17E-08	11	103.3	
2-Oct-17	10:16	38	58	2215	2213	2.42E-08	574	0	2213	2.42E-08	13	103.9	
2-Oct-17	10:57	41	56	2213	2211	2.24E-08	573	-1	2212	1.12E-08	14	104.6	
		0		2211	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	
		0		2155	2155	#DIV/0!		0	2155	#DIV/0!		104.6	

Terrapure Environmental - Phase 8A Stoney Creek Landfill - Phase 8A





CLIENT: Terrapure Environmental

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: Phase 8A

COMPONENT: SET #:

1 - PCL

PERMEAMETER #: A2
NORTHING: 1298.38

NORTHING: 1298.38 EASTING: 1108.27

#### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters: Calculated Parameters: 15_ (mm) Geometric Constant, G1 = 0.61065499 (in mm) for pervious lower boundary (a = -1) Internal diameter of tube, d = Internal diameter of casing, D = Depth of Clay below bottom of casing, b1 = 101 (mm) Depth of casing base below ground, Z = Head at time t, Ht = Ra + R + 20xD (all in mm) 372 (mm) Reference point of scale above ground, Ra = H2' = H2 - c132 (mm) Depth of Clay Liner = 1000 (mm)

#### Reading to be recorded in all rows:

- 1. Date, and time (in minutes)
- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
28-Sep-17	2:21	0	600	-	2752	-	600	0	-	-	19	0.0	
28-Sep-17	2:47	26	591	2752	2743	1.28E-07	598	-2	2745	9.97E-08	19	0.4	
28-Sep-17	3:42	55	579	2743	2731	8.11E-08	597	-1	2732	7.44E-08	19	1.4	Bulldozer was fine grading a few meters away
28-Sep-17	4:04	22	575	2731	2727	6.78E-08	595	-2	2729	3.39E-08	19	1.7	Bulldozer was fine grading a few meters away
28-Sep-17	4:24	20	573	2727	2725	3.73E-08	597	2	2723	7.47E-08	19	2.1	Bulldozer was fine grading a few meters away
29-Sep-17	8:22	1678	491	2725	2643	1.85E-08	591	-6	2649	1.72E-08	13	30.0	
29-Sep-17	9:36	74	486	2643	2638	2.60E-08	591	0	2638	2.60E-08	13	31.3	
29-Sep-17	9:59	23	485	2638	2637	1.68E-08	590	-1	2638	0.00E+00	13	31.6	
29-Sep-17	10:27	28	483	2637	2635	2.76E-08	590	0	2635	2.76E-08	13	32.1	
29-Sep-17	12:08	101	477	2635	2629	2.30E-08	588	-2	2631	1.53E-08	14	33.8	
29-Sep-17	13:45	97	475	2629	2627	7.99E-09	587	-1	2628	3.99E-09	16	35.4	
2-Oct-17	8:30	4005	317	2627	2469	1.58E-08	575	-12	2481	1.45E-08	10	102.2	
2-Oct-17	9:05	35	315	2469	2467	2.36E-08	574	-1	2468	1.18E-08	11	102.7	
2-Oct-17	9:38	33	314	2467	2466	1.25E-08	574	0	2466	1.25E-08	11	103.3	
2-Oct-17	10:16	38	314	2466	2466	0.00E+00	574	0	2466	0.00E+00	13	103.9	
2-Oct-17	10:57	41	313	2466	2465	1.01E-08	573	-1	2466	0.00E+00	14	104.6	







Terrapure Environmental CLIENT:

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT: Phase 8A

SET #:

2 - PCL

PERMEAMETER #: B1 NORTHING: 1373 EASTING: 1289

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Internal diameter of tube, d = 15 (mm)

Internal diameter of casing, D = 101 (mm) Depth of casing base below ground, Z = 358 (mm) Reference point of scale above ground, Ra = 160 (mm) Geometric Constant,  $\overline{G1}$  = 0.61121283 (in mm) for pervious lower boundary (a = -1) Depth of Clay below bottom of casing, b1 = 642 (mm)

Head at time t, Ht = Ra + R + 20xD (all in mm)

H2' = H2 - c

Calculated Parameters:

Depth of Clay Liner =

1000 (mm)

### Reading to be recorded in all rows:

- 1. Date, and time (in minutes)
- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
10-Nov-17	15:32	0	600	-	2780	-	600	0	-	-	5	0.0	
10-Nov-17	16:09	37	583	2780	2763	1.69E-07	600	0	2763	1.69E-07	5	0.6	
14-Nov-17	8:35	5306	429	2763	2609	1.10E-08	605	5	2604	1.14E-08	2	89.1	
14-Nov-17	9:07	32	425	2609	2605	4.88E-08	605	0	2605	4.88E-08	3	89.6	
14-Nov-17	9:55	48	420	2605	2600	4.08E-08	603	-2	2602	2.45E-08	3	90.4	
14-Nov-17	10:40	45	415	2600	2595	4.36E-08	602	-1	2596	3.49E-08	3	91.1	
14-Nov-17	11:00	20	413	2595	2593	3.93E-08	601	-1	2594	1.96E-08	4	91.5	
14-Nov-17	11:57	57	405	2593	2585	5.52E-08	600	-1	2586	4.83E-08	4	92.4	
14-Nov-17	12:20	23	404	2585	2584	1.71E-08	600	0	2584	1.71E-08	4	92.8	
14-Nov-17	13:27	67	397	2584	2577	4.12E-08	599	-1	2578	3.53E-08	5	93.9	
14-Nov-17	14:10	43	392	2577	2572	4.60E-08	598	-1	2573	3.68E-08	6	94.6	
15-Nov-17	8:45	1115	311	2572	2491	2.92E-08	608	10	2481	3.29E-08	0	113.2	
15-Nov-17	10:05	80	304	2491	2484	3.58E-08	604	-4	2488	1.53E-08	2	114.6	
15-Nov-17	10:46	41	301	2484	2481	3.00E-08	602	-2	2483	1.00E-08	2	115.2	
15-Nov-17	13:36	170	287	2481	2467	3.39E-08	600	-2	2469	2.91E-08	4	118.1	
			•										



GHD 3 - Set2B1

CLIENT: Terrapure Environmental

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT:

EASTING:

Phase 8A 2 - PCL

SET #: PERMEAMETER #:

B2 NORTHING: 1373 1289

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Internal diameter of tube, d = 15 (mm) Internal diameter of casing, D = 101 (mm) Depth of casing base below ground, Z = 362 (mm) Geometric Constant,  $\overline{G1}$  = 0.61105594 (in mm) for pervious lower boundary (a = -1) Depth of Clay below bottom of casing, b1 = 638 (mm)

Head at time t, Ht = Ra + R + 20xD (all in mm) H2' = H2 - c

Calculated Parameters:

Reference point of scale above ground, Ra = 160 (mm)

Depth of Clay Liner = 1000 (mm)

Reading to be recorded in all rows:

1. Date, and time (in minutes)

- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
10-Nov-17	15:32	0	600	-	2780	-	600	0	-	-	5	0.0	
10-Nov-17	16:09	37	572	2780	2752	2.79E-07	600	0	2752	2.79E-07	5	0.6	
14-Nov-17	8:35	5306	439	2752	2619	9.51E-09	605	5	2614	9.87E-09	2	89.1	
14-Nov-17	9:07	32	436	2619	2616	3.65E-08	605	0	2616	3.65E-08	3	89.6	
14-Nov-17	9:55	48	432	2616	2612	3.25E-08	603	-2	2614	1.62E-08	3	90.4	
14-Nov-17	10:40	45	429	2612	2609	2.60E-08	602	-1	2610	1.73E-08	3	91.1	
14-Nov-17	11:00	20	426	2609	2606	5.86E-08	601	-1	2607	3.91E-08	4	91.5	
14-Nov-17	11:57	57	421	2606	2601	3.43E-08	600	-1	2602	2.74E-08	4	92.4	
14-Nov-17	12:20	23	419	2601	2599	3.41E-08	600	0	2599	3.41E-08	4	92.8	
14-Nov-17	13:27	67	414	2599	2594	2.93E-08	599	-1	2595	2.34E-08	5	93.9	
14-Nov-17	14:10	43	411	2594	2591	2.74E-08	598	-1	2592	1.83E-08	6	94.6	
15-Nov-17	8:45	1115	356	2591	2536	1.96E-08	608	10	2526	2.32E-08	0	113.2	
15-Nov-17	10:05	80	350	2536	2530	3.02E-08	604	-4	2534	1.00E-08	2	114.6	
15-Nov-17	10:46	41	347	2530	2527	2.95E-08	602	-2	2529	9.82E-09	2	115.2	
15-Nov-17	13:36	170	337	2527	2517	2.38E-08	600	-2	2519	1.90E-08	4	118.1	
	_					_		_					



GHD 4 - Set2B2

**CLIENT:** Terrapure Environmental

**PROJECT:** Stoney Creek Landfill - Phase 8A

LOCATION: Phase 8A

COMPONENT: SET #:

1 - SCL

PERMEAMETER #: C1 NORTHING: 1300 EASTING: 1050

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Depth of Clay Liner =

Internal diameter of tube, d = 15 (mm)
Internal diameter of casing, D = 101 (mm)
Depth of casing base below ground, Z = 370 (mm)

<u>Calculated Parameters:</u> Geometric Constant, G1 =

0.6107362 (in mm) for pervious lower boundary (a = -1) casing, b1 = 630 (mm)

Depth of Clay below bottom of casing, b1 = 630

(mm)

Head at time t, Ht = Ra + R + 20xD (all in mm)

140 (mm) H2' = H2 - c 1000 (mm)

Reading to be recorded in all rows:

Reference point of scale above ground, Ra =

1. Date, and time (in minutes)

- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
14-Sep-17	15:26	0	600	-	2760	-	600	0	-	-	26.5	0.0	
14-Sep-17	16:17	51	278	2760	2438	2.48E-06	604	4	2434	2.51E-06	27.5	0.9	
14-Sep-17	16:41	24	268	2438	2428	1.74E-07	604	0	2428	1.74E-07	27.5	1.3	
14-Sep-17	17:11	30	255	2428	2415	1.82E-07	604	0	2415	1.82E-07	27.5	1.8	
14-Sep-17	17:29	18	248	2415	2408	1.64E-07	604	0	2408	1.64E-07	27.5	2.1	
14-Sep-17	18:10	41	235	2408	2395	1.34E-07	604	0	2395	1.34E-07	27.5	2.7	
15-Sep-17	8:19	849	75	2395	2235	8.29E-08	585	-19	2254	7.27E-08	18	16.9	
15-Sep-17	9:22	63	70	2235	2230	3.62E-08	583	-2	2232	2.17E-08	18.5	17.9	
15-Sep-17	10:16	54	65	2230	2225	4.23E-08	584	1	2224	5.08E-08	19.5	18.8	
15-Sep-17	11:14	58	60	2225	2220	3.95E-08	585	1	2219	4.74E-08	21	19.8	
15-Sep-17	12:04	50	58	2220	2218	1.83E-08	586	1	2217	2.75E-08	22.5	20.6	
15-Sep-17	14:22	138	50	2218	2210	2.67E-08	593	7	2203	5.01E-08	26.25	22.9	
15-Sep-17	15:11	49	48	2210	2208	1.88E-08	593	0	2208	1.88E-08	27	23.8	
15-Sep-17	16:02	51	44	2208	2204	3.62E-08	593	0	2204	3.62E-08	28	24.6	
15-Sep-17	16:45	43	40	2204	2200	4.30E-08	593	0	2200	4.30E-08	28.5	25.3	
15-Sep-17	16:48	3	643	2200	2803	-8.22E-05	593	0	2803	-8.22E-05	28.5	25.4	Refilled the permeameter
15-Sep-17	17:04	16	636	2803	2796	1.59E-07	593	0	2796	1.59E-07	28.5	25.6	·
18-Sep-17	7:16	3732	336	2796	2496	3.10E-08	576	-17	2513	2.91E-08	18	87.8	
18-Sep-17	8:03	47	334	2496	2494	1.74E-08	576	0	2494	1.74E-08	18.5	88.6	
18-Sep-17	8:39	36	334	2494	2494	0.00E+00	575	-1	2495	-1.13E-08	19	89.2	Erroneous reading
18-Sep-17	10:41	122	333	2494	2493	3.35E-09	575	0	2493	3.35E-09	21	91.3	-
18-Sep-17	13:00	139	324	2493	2484	2.65E-08	579	4	2480	3.83E-08	25	93.6	



CLIENT: Terrapure Environmental

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT: Phase 8A

1 - SCL

SET #: PERMEAMETER #: NORTHING:

C2 1300 EASTING: 1050

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Internal diameter of tube, d = 15 (mm) Internal diameter of casing, D = 101 (mm) Depth of casing base below ground, Z = 343 (mm)

Calculated Parameters: Geometric Constant, G1 = 0.61178414 (in mm) for pervious lower boundary (a = -1) Depth of Clay below bottom of casing, b1 = 657 (mm)

Head at time t, Ht = Ra + R + 20xD (all in mm)

175 (mm) H2' = H2 - c

Reference point of scale above ground, Ra = Depth of Clay Liner =

1000 (mm)

Reading to be recorded in all rows:

- 1. Date, and time (in minutes)
- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
14-Sep-17	15:25	0	600	-	2795	-	600	0	-	-	26.5	0.0	
14-Sep-17	16:16	51	510	2795	2705	6.54E-07	604	4	2701	6.84E-07	27.5	0.9	
14-Sep-17	16:40	24	482	2705	2677	4.42E-07	604	0	2677	4.42E-07	27.5	1.3	
14-Sep-17	17:09	29	458	2677	2653	3.17E-07	604	0	2653	3.17E-07	27.5	1.7	
14-Sep-17	17:28	19	442	2653	2637	3.25E-07	604	0	2637	3.25E-07	27.5	2.1	
14-Sep-17	18:10	42	412	2637	2607	2.78E-07	604	0	2607	2.78E-07	27.5	2.8	
15-Sep-17	8:19	849	149	2607	2344	1.28E-07	585	-19	2363	1.18E-07	18	16.9	
15-Sep-17	9:20	61	141	2344	2336	5.71E-08	583	-2	2338	4.28E-08	18.5	17.9	
15-Sep-17	10:14	54	134	2336	2329	5.67E-08	584	1	2328	6.48E-08	19.5	18.8	
15-Sep-17	11:13	59	129	2329	2324	3.71E-08	585	1	2323	4.46E-08	21	19.8	
15-Sep-17	12:06	53	125	2324	2320	3.31E-08	586	1	2319	4.14E-08	22.5	20.7	
15-Sep-17	14:22	136	113	2320	2308	3.89E-08	592	6	2302	5.84E-08	26.25	23.0	
15-Sep-17	15:11	49	110	2308	2305	2.71E-08	593	1	2304	3.61E-08	27	23.8	
15-Sep-17	16:04	53	105	2305	2300	4.18E-08	593	0	2300	4.18E-08	28	24.7	
15-Sep-17	16:43	39	100	2300	2295	5.69E-08	593	0	2295	5.69E-08	28.5	25.3	
15-Sep-17	16:46	3	610	2295	2805	-6.82E-05	593	0	2805	-6.82E-05	28.5	25.4	Refilled the permeameter
15-Sep-17	17:03	17	605	2805	2800	1.07E-07	595	2	2798	1.50E-07	28.5	25.6	
18-Sep-17	7:16	3733	278	2800	2473	3.39E-08	576	-19	2492	3.18E-08	18	87.9	
18-Sep-17	8:03	47	275	2473	2470	2.63E-08	576	0	2470	2.63E-08	18.5	88.6	
18-Sep-17	8:38	35	273	2470	2468	2.36E-08	575	-1	2469	1.18E-08	19	89.2	
18-Sep-17	10:39	121	270	2468	2465	1.02E-08	575	0	2465	1.02E-08	21	91.2	
18-Sep-17	13:00	141	265	2465	2460	1.47E-08	579	4	2456	2.65E-08	25	93.6	
·													



CLIENT: Terrapure Environmental

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT: Phase 8A

SET #:

2 - SCL

PERMEAMETER #: A1 NORTHING: 1354 EASTING: 1265

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Internal diameter of tube, d = 15 (mm)

Internal diameter of casing, D = 101 (mm)

Depth of casing base below ground, Z = 342 (mm)

 $\label{eq:Geometric Constant, G1 = 0.6118213} \begin{array}{ll} \text{Geometric Constant, G1 = 0.6118213} & \text{(in mm) for pervious lower boundary (a = -1)} \\ \text{Depth of Clay below bottom of casing, b1 = 658} & \text{(mm)} \end{array}$ 

Head at time t, Ht = Ra + R + 20xD (all in mm)

Calculated Parameters:

Reference point of scale above ground, Ra = 170 (mm) H2' = H2 - c
Depth of Clay Liner = 1000 (mm)

Reading to be recorded in all rows:

1. Date, and time (in minutes)

- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
5-Oct-17	12:39	0	600	-	2790	-	600	0	-	-	20	0.0	
5-Oct-17	13:57	78	583	2790	2773	7.99E-08	601	1	2772	8.46E-08	21	1.3	
5-Oct-17	14:25	28	576	2773	2766	9.20E-08	602	1	2765	1.05E-07	21	1.8	Shelby tubes were collected nearby
5-Oct-17	15:27	62	560	2766	2750	9.54E-08	602	0	2750	9.54E-08	21	2.8	
5-Oct-17	16:36	69	542	2750	2732	9.70E-08	602	0	2732	9.70E-08	21	4.0	
6-Oct-17	8:33	957	392	2732	2582	6.02E-08	601	-1	2583	5.98E-08	16	19.9	
6-Oct-17	9:01	28	387	2582	2577	7.06E-08	600	-1	2578	5.65E-08	16	20.4	
6-Oct-17	10:27	86	378	2577	2568	4.15E-08	600	0	2568	4.15E-08	16	21.8	
6-Oct-17	12:01	94	366	2568	2556	5.08E-08	598	-2	2558	4.23E-08	16	23.4	
6-Oct-17	13:01	60	359	2556	2549	4.66E-08	598	0	2549	4.66E-08	17	24.4	
6-Oct-17	13:28	27	357	2549	2547	2.96E-08	599	1	2546	4.45E-08	18	24.8	
6-Oct-17	14:30	62	350	2547	2540	4.53E-08	598	-1	2541	3.88E-08	20	25.9	
6-Oct-17	15:00	30	347	2540	2537	4.02E-08	599	1	2536	5.36E-08	20	26.4	
6-Oct-17	15:04	4	600	2537	2790	-2.42E-05	599	0	2790	-2.42E-05	20	26.4	Refilled the permeameter
6-Oct-17	15:18	14	599	2790	2789	2.61E-08	600	1	2788	5.22E-08	20	26.7	·
10-Oct-17	8:43	5365	95	2789	2285	3.79E-08	598	-2	2287	3.77E-08	16	116.1	
10-Oct-17	10:02	79	89	2285	2279	3.39E-08	597	-1	2280	2.83E-08	17	117.4	
10-Oct-17	11:33	91	83	2279	2273	2.95E-08	598	1	2272	3.45E-08	20	118.9	
10-Oct-17	12:36	63	82	2273	2272	7.12E-09	599	1	2271	1.42E-08	22	120.0	
10-Oct-17	13:39	63	77	2272	2267	3.57E-08	601	2	2265	4.99E-08	24	121.0	
10-Oct-17	15:03	84	74	2267	2264	1.61E-08	602	1	2263	2.14E-08	25	122.4	
_													

Terrapure Environmental - Phase 8A Stoney Creek Landfill - Phase 8A



Terrapure Environmental CLIENT:

PROJECT: Stoney Creek Landfill - Phase 8A

LOCATION: COMPONENT:

EASTING:

Phase 8A

1265

SET #: 2 - SCL PERMEAMETER #: A2 NORTHING: 1354

### STAGE 1 TEST CALCULATIONS (this table to be used only by staff experienced in this test)

Input Parameters:

Calculated Parameters: Internal diameter of tube, d = Geometric Constant,  $\overline{G1}$  = 0.61136777 (in mm) for pervious lower boundary (a = -1) 15 (mm) Internal diameter of casing, D = 101 Depth of Clay below bottom of casing, b1 = 646 (mm) Depth of casing base below ground, Z = 354 (mm) Head at time t, Ht = Ra + R + 20xD (all in mm) H2' = H2 - c

Reference point of scale above ground, Ra = 150 (mm) Depth of Clay Liner = 1000 (mm)

Reading to be recorded in all rows: 1. Date, and time (in minutes)

- 2. R (in mm) = water level in standpipe above the reference point of scale for the given permeameter at time t
- 3. C (mm) = water level in standpipe above the reference point of scale for the Temperature Effect Gauge during time period t
- 4. Temperature and Remarks

Date	Time	Time lapsed	R	H1	H2	K1	С	С	H2'	K1'	Temperature	Cumulated	Remarks
		(minutes)	(mm)	(mm)	(mm)	(cm/s)	(mm)	(mm)	(mm)	(cm/s)	(°C)	time (hr)	
5-Oct-17	12:39	0	600	-	2770	-	600	0	-	-	20	0.0	
5-Oct-17	13:57	78	590	2770	2760	4.72E-08	601	1	2759	5.20E-08	21	1.3	
5-Oct-17	14:25	28	586	2760	2756	5.28E-08	602	1	2755	6.60E-08	21	1.8	Shelby tubes were collected nearby
5-Oct-17	15:27	62	579	2756	2749	4.18E-08	602	0	2749	4.18E-08	21	2.8	
5-Oct-17	16:36	69	570	2749	2740	4.84E-08	602	0	2740	4.84E-08	21	4.0	
6-Oct-17	8:33	957	471	2740	2641	3.92E-08	601	-1	2642	3.88E-08	16	19.9	
6-Oct-17	9:01	28	468	2641	2638	4.14E-08	600	-1	2639	2.76E-08	16	20.4	
6-Oct-17	10:27	86	461	2638	2631	3.15E-08	600	0	2631	3.15E-08	16	21.8	
6-Oct-17	12:01	94	453	2631	2623	3.30E-08	598	-2	2625	2.47E-08	16	23.4	
6-Oct-17	13:01	60	448	2623	2618	3.24E-08	598	0	2618	3.24E-08	17	24.4	
6-Oct-17	13:28	27	446	2618	2616	2.88E-08	599	1	2615	4.33E-08	18	24.8	
6-Oct-17	14:30	62	440	2616	2610	3.77E-08	598	-1	2611	3.14E-08	20	25.9	
6-Oct-17	15:00	30	439	2610	2609	1.30E-08	599	1	2608	2.60E-08	20	26.4	
6-Oct-17	15:04	4	600	2609	2770	-1.53E-05	599	0	2770	-1.53E-05	20	26.4	Refiled the permeameter
6-Oct-17	15:18	14	599	2770	2769	2.63E-08	600	1	2768	5.26E-08	20	26.7	
10-Oct-17	8:43	5365	189	2769	2359	3.04E-08	598	-2	2361	3.03E-08	15	116.1	
10-Oct-17	10:02	79	183	2359	2353	3.28E-08	597	-1	2354	2.74E-08	17	117.4	
10-Oct-17	11:33	91	178	2353	2348	2.38E-08	598	1	2347	2.86E-08	20	118.9	
10-Oct-17	12:36	63	175	2348	2345	2.07E-08	599	1	2344	2.76E-08	22	120.0	
10-Oct-17	13:39	63	173	2345	2343	1.38E-08	601	2	2341	2.76E-08	24	121.0	
10-Oct-17	15:03	84	168	2343	2338	2.59E-08	602	1	2337	3.11E-08	25	122.4	
						_							

(mm)







Appendix I Geomembrane Quality Assurance Program

Appendix I1 80 mil – Primary Liner







DATE: 2 O	ct 17	PR	EPARED BY:	PL		INST	TALLERS: Terra	fix	
PROJECT:	Phase 8A	TEI	MPERATURE	AND WEA	THER CONDITI	ONS EQU	IIPMENT:		
FROJECT.	Filase oA	AN	<b>/I:</b> 10 ° C, Cle	ar Sky <b>Pi</b>	<b>M:</b> 16 ° C, Clear	Sky Mer	Merlo P38.13 Plus Zoom Boom		
CLIENT:	Terrapure		ORK HOURS			Cat	Cat 245 G LC Excavator		
	Environmer	ntal ST/	<b>ART:</b> 8:00 A	.M. FI	<b>NISH:</b> 3:00 P.M	1. Gen	erators		
SITE PLAN									
4.									
$\mathcal{N}$									
$\Lambda$									
00	R96			R6				R42	
P35	P11	P10	Р9	P8	P7	P6	P5	P12	
R9	7 • R37		4.7		1000		1000	1 12	
R9							R53		
Ra	• K38								
	• R39		R5					L.,	
S							ነ ነ	R43 R54	
R9	9 • R41	S9	S8	<b>S</b> 7	S6	S5	S4	S13	
			00	31	100	30	54	R55	
R13	2			R12					
	1 .			R10	R14	R16	R18	R45	
R1	LT I	R2 R3 R	4 R7 R8 F	9 R11	R13	R15 F		14 R46	
<b>S60</b>	S10						<b>₹</b> \$10	S18=>	
	-			PHAS	E 1B				
						<u>Pan</u>	els Roll#		
							<u>2-Oct</u>		
							P5-P7: 5-0276		
							P8-P11 5-0276	58	
GEOMEMB	RANE QUAN	ITITY		SE	AM QUANTITY	,			
Daily:			<b>979</b> m ²		aily:		<b>191</b> m		
Cumulative	·•		<b>2,024</b> m ²		umulative:		<b>372</b> m		
CALBRATIN			-		CTIVE TESTS	DES	TRUCTIVE TEST	rs:	
Fusion: CF				Test: 21 - 9		1 - 0			
Extrusion:					19 - Repairs				
REPAIRS:		airs complete							
	26 - All test	s completed	on 2 Oct 17						
NOTES:									







PROJECT:  CLIENT:  SITE PLAN  A	Phase 8A Terrapure Environmental	TEMPERATURE AN AM: 5 ° C, Sunny v WORK HOURS START: 7:55 A.M.	ND WEATHER CONDIT with some clouds	TIONS PM: 9 ° C, Cloud	ły	<b>EQUIPMENT:</b> Merlo P38.13 Plus Z	oom Boon	
CLIENT: SITE PLAN	Terrapure	WORK HOURS	vith some clouds	PM: 9 ° C, Cloud	dy	Merlo P38.13 Plus Z	oom Boor	
SITE PLAN	•							
SITE PLAN	Environmental	START: 7:55 Δ M				Generators		
		31AILL 7.33 A.IVI.		FINISH: 4:30 P.I	M.	Cat 245 G LC Excava	ator	
$\mathcal{N}$								
7 S19 S20 R52 R60 R87  R52 R60 R87  ASE 1B	\$22 R63 \$24 \$ \$21 \$23 \$21 \$23 \$21 \$23 \$21 \$23 \$21 \$23 \$22 \$23 \$23 \$23 \$24 \$2 \$25 \$25 \$25 \$25 \$26 \$25 \$27 \$25 \$27 \$25 \$28 \$25 \$28 \$25 \$29 \$25 \$20 \$25 \$2	P23 P24 P25  25 S26 S27  R85 R85  ASE 2	P26 P27 P28	R72 P29 P30 S31 S32 R87 R88 R89 R	P31 P3:	2 P33 P34 R15  S35 S36 S62  R34 \$\ightarrow \text{S37 S64}  ASE 2	P51	
						Panels Roll #  9-Nov  P17-P22: 5-02766  P23-P26: 5-02765  P27-P30: 5-02766  P31-P34: 5-02766	59 53	
GEOMEMBRANE (	QUANTITY			SEAM QUANTIT	ſΥ			
Daily:		2,883	$m^2$	Daily:		<b>551</b> m		
Cumulative:		5,767	$m^2$	Cumulative:		<b>1,083</b> m		
CALBRATING TEST	S:		NON-DESTRUCTIVE 1	rests		DESTRUCTIVE TEST	S:	
•	v 17), CF10 (9 Nov 1	7), CF11 (9 Nov),	Air Test: 24 - Seams (	9 Nov 17), 20 - Se	eams (10	2 004 1007/11		
CF12 (9 Nov 17), C		v 17) CE7 /10 Nov	Nov 17)	naire (10 No.: 47)	16	2 - DS4 and DS5 (10	Nov 17)	
		V 17), CE7 (10 NOV	Vacuum Box: 20 - Rep	pairs (10 NOV 17),	, 10 -			
<i>"</i>			Repairs (14 Nov 17)					
, ,				K81) completed	on 10 Nov	1/.		
REPAIRS:				,p				
, ,	14 - Repairs (R82 to	R95) completed or						



DATE: 23	Nov 17	PREPARED	BY: PL			IN	STALLERS: Terrafix
DDOJECT	Disease OA	TEMPERA	TURE AND WEAT	THER CONDITION	NS	EC	UIPMENT:
PROJECT:	Phase 8A	<b>AM:</b> 3 ° C,	Cloudy	P	M: 5 ° C, Cloudy	y Me	erlo P38.13 Plus Zoom Boom
a	Terrapure	WORK HO	URS			Ge	enerators
CLIENT:	Environmental	START: 11	1:00 A.M.	FI	INISH: 4:00 P.N	Л. Ca	t 470G LC Excavator
SITE PLAN							
						2400	
$\mathcal N$		R117	R103	R102	R101	R100	R96
<b>A</b>	40	P39	P38	P37	P36	P35	P11
1	40					R97	•
				l I			• R37
				l I		R98	<b>4</b>
				l I		600000	• R3
				l I			• R3
	10.70000		200.00	1 + 1 + 1 + 1 + 1 + 1		S38	• R4
	S43	S42	S41	\$40	S39	10,000	• R41
	*******		R115	1.000		R99	7
				R116			
	j						
						R132	7
				R130	R131		
				•	•		1 2
	1		PHAS	E 1B	<b>←</b> \$52	R13	
			PHAS	E 1B	<b>₹</b> 3552	<b>€</b> 360 <b>€</b>	
			PHAS	E 1B	<b>◆</b> \$52	<b>€</b> 360 <b>€</b>	nels Roll #
GEOMEMI	BRANE QUANTITY	<b>'</b>			S52	S60C	nels Roll #
<b>GEOMEMI</b> Daily:	BRANE QUANTITY	•	PHAS	sı		S60C	nels Roll #
Daily:	•	•	<b>806</b> m ²	SI D	EAM QUANTITY	S60C	nels Roll # 23-Nov P35-P39 5-027657
Daily: Cumulativ	e:	′	<b>806</b> m ² <b>6,573</b> m ²	SI D C	EAM QUANTITY aily: umulative:	Pa	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m
Daily: Cumulative CALBRATII	e: NG TESTS:		806 m ² 6,573 m ² NON-DE	SI D Cr ESTRUCTIVE TES	EAM QUANTITY aily: umulative: TS	Pa /	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS:
Daily: Cumulative CALBRATII	e:		<b>806</b> m ² <b>6,573</b> m ² <b>NON-DE</b> 7) Air Test:	SI D Cr STRUCTIVE TES : 5 - Seams (25 N	EAM QUANTITY aily: umulative: TS lov 17)	Pa  DE  1 -	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m
Daily: Cumulative CALBRATII	e: NG TESTS:		806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum	SI D CC ESTRUCTIVE TES: : 5 - Seams (25 N Box: 1 - Seams (	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 -	Pa  Pa  Y  Seams	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS:
Daily: Cumulative CALBRATII Fusion: CF	e: <b>NG TESTS:</b> F14 (23 Nov 17), C	F15 (24 Nov 17	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov	SI D CC ESTRUCTIVE TES : 5 - Seams (25 N Box: 1 - Seams 17), 8 - Repairs	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 -	Pa  Pa  Y  Seams	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS:
Daily: Cumulative CALBRATII Fusion: CF  Extrusion:	e: <b>NG TESTS:</b> F14 (23 Nov 17), C CE11 (24 Nov 17	:F15 (24 Nov 17 ), CE13 (27 Nov	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov 7 17) (27 Nov	SI D CC ESTRUCTIVE TES: : 5 - Seams (25 N Box: 1 - Seams (17), 8 - Repairs (17)	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 -	Pa  Y  De 1 - Seams Repairs	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m  STRUCTIVE TESTS: DS8 (25 Nov 17)
Daily: Cumulative CALBRATII Fusion: CF	e: NG TESTS: F14 (23 Nov 17), C CE11 (24 Nov 17 8 - Repair (R96 t	EF15 (24 Nov 17 ), CE13 (27 Nov to R103) compl	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov (27 Nov (27 Nov eted on 24 Nov 1	SI D CC ESTRUCTIVE TES: : 5 - Seams (25 N Box: 1 - Seams ( 17), 8 - Repairs ( 17), 8 - Repairs ( 17)	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 -	Pa  Y  De 1 - Seams Repairs	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m  STRUCTIVE TESTS: DS8 (25 Nov 17)
Daily: Cumulative CALBRATII Fusion: CF  Extrusion: REPAIRS:	e: NG TESTS: F14 (23 Nov 17), C CE11 (24 Nov 17 8 - Repair (R96 t 5 - Repairs (R11	F15 (24 Nov 17 ), CE13 (27 Nov to R103) compl 7, R130 to R133	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov (27 Nov (27 Nov eted on 24 Nov 1 3) completed on	SI D Cr STRUCTIVE TES: : 5 - Seams (25 N Box: 1 - Seams (17), 8 - Repairs (17), 8 - Repairs (17), 7. 2 - Repairs (R)	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 -	Pa  Pa  Y  DE  1 -  Seams Repairs  Ompleted on	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m ESTRUCTIVE TESTS: DS8 (25 Nov 17)
Daily: Cumulative CALBRATII Fusion: CF  Extrusion:	e: NG TESTS: F14 (23 Nov 17), C CE11 (24 Nov 17 8 - Repair (R96 t 5 - Repairs (R11 24 Nov 17 - Woi	F15 (24 Nov 17 ), CE13 (27 Nov to R103) compl 7, R130 to R13: rk hours: 8:00 -	806 m ² 6,573 m ² NON-DE Air Test: Vacuum (27 Nov (27 Nov (27 Nov eted on 24 Nov 1 3) completed on 3	STRUCTIVE TES: : 5 - Seams (25 No Box: 1 - Seams (17), 8 - Repairs (17), 7. 2 - Repairs (R. 27 Nov 17. ture, and weather	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 -	Pa  Pa  Y  DE  1 -  Seams Repairs  Dempleted on  MM: 1° C, Sund	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS: DS8 (25 Nov 17)  25 Nov 17.
Daily: Cumulative CALBRATII Fusion: CF  Extrusion: REPAIRS:	e: NG TESTS: F14 (23 Nov 17), C CE11 (24 Nov 17 8 - Repair (R96 t 5 - Repairs (R11' 24 Nov 17 - Wor 25 Nov 17 - Wor	F15 (24 Nov 17 ), CE13 (27 Nov to R103) compl 7, R130 to R13 rk hours: 8:00 - rk hours: 8:00 -	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov (27 Nov (27 Nov eted on 24 Nov 1 3) completed on 3 16:45; Temperat 16:30; Temperat	STRUCTIVE TES: 5 - Seams (25 No Box: 1 - Seams (17), 8 - Repairs (17) 7. 2 - Repairs (R27 Nov 17. ture, and weather ture	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 - 115 to R116) co	Pa  Pa  Seams Repairs  Ompleted on  MM: 1° C, Suni	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS: DS8 (25 Nov 17)  25 Nov 17.  ny; PM: 10° C, Sunny rdy PM: 9° C, Cloudy
Daily: Cumulative CALBRATII Fusion: CF  Extrusion: REPAIRS:	e: NG TESTS: F14 (23 Nov 17), C CE11 (24 Nov 17 8 - Repair (R96 t 5 - Repairs (R11' 24 Nov 17 - Wor 25 Nov 17 - Wor	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	806 m ² 6,573 m ² NON-DE 7) Air Test: Vacuum (27 Nov (27 Nov (27 Nov eted on 24 Nov 1 3) completed on 3 16:45; Temperat 16:30; Temperat	STRUCTIVE TES: 5 - Seams (25 No Box: 1 - Seams (17), 8 - Repairs (17) 7. 2 - Repairs (R27 Nov 17. ture, and weather ture	EAM QUANTITY aily: umulative: TS lov 17) (25 Nov 17), 1 - (25 Nov 17), 7 - 115 to R116) co	Pa  Pa  Seams Repairs  Ompleted on  MM: 1° C, Suni	nels Roll # 23-Nov P35-P39 5-027657  153 m 1,235 m STRUCTIVE TESTS: DS8 (25 Nov 17)  25 Nov 17.



DATE: 24 Nov 17		PREPARED BY	<b>':</b> PL				I	NSTALLERS: Terrafix
DDOLECT: Dhoos 0	Δ.	TEMPERATUR	RE AND WE	ATHER CO	ONDITION	S	E	QUIPMENT:
PROJECT: Phase 8	А	<b>AM:</b> 1 ° C, Cle	ar sky		<b>PM:</b> 10	° C, Sunny wit	h clouds	Merlo P38.13 Plus Zoom Boom
Terrapu	ire	<b>WORK HOUR</b>	S				(	Generators
CLIENT: Environ		<b>START:</b> 8:00	A.M.		FINISH:	4:45 P.M.		Cat 245 G LC Excavator
SITE PLAN							<u> </u>	
						_0.0		2002
$\mathcal{N}$	8		R122	R121	R120	R119	R118	R117
		\P50	P49	P48	P42	P41	P40	P39
	P47							1.1.1.1
	1011	S58	S55					
R123	S4	9 \		S54	S53	S45		
KIZS		$\overline{}$						
	P46	**	R112	D444	DAAA			
R124	S4	8 S57	R110	R111	R114	R108 S44	S4	3 S4:
		R113	S56=>	R109	<=S56	I KIOO OAA	34	3 34,
	P45				S51			
	S4	17			V		R105	
R12	5	1				R107		
					Û			
	P44	227		В	128 S51	R106	R104	_
R126	S	46		K	120	S52		<del></del>
					1	ſ		
	P43					S59	PHAS	E 1D
R12	S	50				R129	FIIAS	L ID
KIZ	1					S11		
	P4				•	R20		
	1 '	R34 R3	5	R36		R21		
naa						- K21	<u> </u>	Panels Roll #
								<u>24-Nov</u>
							P40-P42,	, P46, P47: 5-027654
								P43-P45: 5-027664
								P48-P50: 5-027655
GEOMEMBRANE QUANTIT	Υ				SEAM C	QUANTITY		
Daily:		1	<b>772</b> m ²		Daily:	•		<b>306</b> m
			<b>345</b> m ²			<b>4</b> 1		
Cumulative:		0,			Cumula			<b>1,542</b> m
CALBRATING TESTS:		.=\ _=			TIVE TEST			DESTRUCTIVE TESTS:
Fusion: CF16 (24 Nov 17), (	CF17 (24 No	v 17), CF18 (25		est: 11 - Se	eams (25 N	lov 17), 6 - Sea	`	
Nov 17)			17)					2 - DS6 and DS7 (25 Nov 17)
						(25 Nov 17), 18		
			(27 N	ov 17), 1 -	Seams (2	5 Nov 17), 1 - 9	Seams (27	
Extrusion: CE11 (24 Nov 17	7), CE13 (27	Nov 17)	Nov 1	L7)				
REPAIRS: 2 - Repa	air (R104, R1	05) completed	on 24 Nov	17. 9 - Re	pairs (R10	06 to R114) cor	mpleted on 25	5 Nov 17.
13 - Rep	airs (R117 t	o R129) compl	eted on 27	Nov 17.				
NOTES: 25 Nov	17 - Work h	ours: 8:00 - 16:	30; Tempe	rature, an	d weathe	r conditions: A	M: 6° C, Cloud	dy PM: 9° C, Cloudy
			•					y with some clouds; PM: 3° C,
	vith some cl		-, ·pc	,			,	,
Sainty v	551116 611							
<b>d</b>								



DATE: 30 No	ov 17		PREPARI	D BY: PL			INSTALLERS: Terrafix
PROJECT:	Phase 8	1		ATURE AND WEATH			EQUIPMENT:
T NOJECT.				C, Cloudy	PM: 7	7°C, Rain	Merlo P38.13 Plus Zoom Boom
CLIENT:	Terrapur		WORK H				Generators
	Environr	nental	START: 9	9:00 A.M.	FINIS	<b>H:</b> 1:30 P.M.	
SITE PLAN							
$\mathcal{N}$		_R134		_R139			
JV		7 _			D/	2	
个	P34	P	51	P52	P.R138	os	
		2020		127.15.55	KIOO		
Í							
				0.02	S61		
	5	S62		S63	501		
		R138	5	R136	R137		
	44.		9%	1000		-004	
	< <b>⇒</b> s₃	7 S64 C	⇒		<	<b>■</b> \$64	
			_				
							Panels Roll #
							30-Nov
							P51-P53: 5-027665
GEOMEMBR	ANE QUANTITY				SEAN	1 QUANTITY	
Daily:				<b>623</b> m ²	Daily:	:	<b>112</b> m
Cumulative:				<b>8,968</b> m ²	Cumi	ulative:	<b>1,653</b> m
CALBRATING	TESTS:				RUCTIVE TESTS		DESTRUCTIVE TESTS:
Fusion: CF19	), CF20			Air Test: 6			1 - DS9
Extrusion: C	E15			Vacuum Bo	x: 6 - Repairs		
REPAIRS:				completed 30 Nov 20	)17.		
	All test o	ompleted o	n 30 Nov	2017			
NOTES:				·			



DATE: 4 Dec	17	PREPARED BY: F	PL			INSTALLERS: Terrafix
PROJECT:	Phase 8A	TEMPERATURE A	AND WEATHER CON			EQUIPMENT:
I KOOLOT.		AM: -		PM: 5 ° C, Cloudy	•	Merlo P38.13 Plus Zoom Boom
CLIENT:	Terrapure	WORK HOURS				Generators
	Environmental	<b>START:</b> 1:30 P.M		<b>FINISH:</b> 4:45 P.M	1.	
SITE PLAN  N	P52 S68	P56 P53 S69 P54		ary Berm Secti		
	S65 R136	S66 Phas		7		ase 2 nel
i	Phase 2					<u>Panels</u> <u>Roll #</u> <u>4-Dec</u> P54: 5-027654
GEOMEMBR	ANE QUANTITY			SEAM QUANTITY	/	
Daily:		143	$m^2$	Daily:	-	<b>26</b> m
Cumulative:		9,111		Cumulative:		1,679 m
Cumulative:	TESTS.	9,111	NON-DESTRUCTIVE			DESTRUCTIVE TESTS:
Fusion: none	J 16313.		Air Test: none	12313		none
Extrusion: CE	16		Vacuum Box: 2 - Sear	ns		none
REPAIRS:	none		vacadin box. Z - Seal	110		1
KEFAIKS.	none					
NOTES:						



DATE: 6 Dec 17		PREPARED BY: PL		INSTALLERS: Terrafix
PROJECT:	Phase 8A	TEMPERATURE AND W		EQUIPMENT:
ROJECT.	Filase oA	AM: 2° C, Clear Sky	<b>PM:</b> 4 ° C, Clear Sky	Merlo P38.13 Plus Zoom Boom
CLIENT:	Terrapure	WORK HOURS		Generators
LILIVI.	Environmental	<b>START:</b> 10:30 A.M.	<b>FINISH:</b> 1:00 P.M.	Polaris ATV
N ↑	P52 S68	P56 P53 S69 P54	Temporary Berm Secti	on
ı	S65 R136 Phase 2	S66 Phase 2 Panel	\$67	Phase 2 Panel
			<u>Panels</u>	Roll#
			<u>30</u>	0-Nov
				P55: 460 Solmax 2-063597
				P56: 480 Solmax 2-064415
EOMEMBRANE	CHANTITY		SEAM QUANTITY	
aily:	. QUANTIT	<b>190</b> m ²	Daily:	<b>35</b> m
		9,301 m ²	· ·	
umulative: ALBRATING TES	CTC.		Cumulative:	1,714 m
	010:		I-DESTRUCTIVE TESTS	DESTRUCTIVE TESTS:
usion: none xtrusion: CE17			est: none ium Box: 3 - Seams	none
		vacu	idili box. 3 - Seallis	
EPAIRS:	none			
NOTES:				
NOTES:				

### **Instrument Calibration - Fusion Welder**



Project: Phase 8A

Client: Terrapure Environmental

Prepared By: P

Test Number	CF 1	CF 2	CF 3	CF 4	CF 5	CF 6	CF 7	CF 8	CF 9	CF 10
Date	29-Sep-17	2-Oct-17	2-Oct-17	3-Oct-17	3-Oct-17	1-Nov-17	1-Nov-17	1-Nov-17	9-Nov-17	9-Nov-17
Time	8:42	7:48	10:10	8:40	8:45	9:45	11:45	14:38	7:55	10:05
Air Temperature (°C)	13	10	13	13	13	5	6	8	5	5
Instrument Number	W3-99	W3-99	W3-99	W3-99	W3-99	W5-2	W5-2	W5-2	W-88	0.3T
Instrument Temperature (°F)	800	800	800	800	800	825	825	825	800	800
Instrument Speed (ft/s)	5.5	6	6	6	6	7	7	6	5.5	6.5
Name of Welding Technician	JB	JB	JB	TG	TG	EH	EH	EH	TG	NK
Notes				Smooth (Phase 1B) / Textured (Phase 8A)	Textured (Phase 1B) / Textured (Phase 8A)			Smooth (Phase 1B) / Textured (Phase 8A)		
PEEL SPECIFICATIONS 80 mil - 22 kN/m (Hot Wedge Seam) - 126 lbs/in (Hot Wedge Seam)										
	146/172	162/160	158/171	151/157	189/177	143/134	135/172	191/187	148/126	174/162
	147/163	166/145	158/154	130/163	173/173	148/131	153/170	178/198	130/143	162/170
Peel Resistance (lbs/in)	164/174	155/152	176/158	143/144	173/196	128/131	172/169	201/194	135/140	176/164
	159/144	159/170	186/168	155/125	174/185	149/131	174/171	190/199	140/129	171/162
	150/162	166/155	167/166	127/129	207/161	130/132	175/173	194/202	132/127	156/166
Type of Rupture	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3
SHEAR SPECIFICATIONS 80 mil - 28 kN/m - 160 lbs/in										
	231	239	204	155	236	184	239 SE1	250	178	263
	234	237	196	161	234	177	241	245	192	264
Shear Resistance (lbs/in)	236	238	202	159	243	191	245	244	189	254
	233	243	196	158	238	179	256	242	195	251
	231	240	198	156	216	181	241 SE1	254	202	254
Type of Rupture	ALL	ALL	ALL	ALL	ALL	ALL	ALL	ALL	ALL	SE1

	All fusion welding was 80 mil on 80 mil geomembrane. Generally the calibrations are smooth on smooth welded unless noted otherwise.
Notes:	

(2- 11103232 - Fusion Welder Calibration/Fusion Cal Form)

### **Instrument Calibration - Fusion Welder**



Project: Phase 8A

Client: Terrapure Environmental

Prepared By: P

Test Number	CF 11	CF 12	CF 13	CF 14	CF 15	CF 16	CF 17	CF 18	CF 19	CF 20
Date	9-Nov-17	9-Nov-17	10-Nov-17	23-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	25-Nov-17	30-Nov-17	30-Nov-17
Time	11:15	13:10	8:35	12:30	8:00	9:22	10:45	10:50	8:55	8:32
Air Temperature (°C)	6	9	-7	3	2	2	7	8	1	1
Instrument Number	0.5T	W-88	W-88	W 9-0	N-2	N-2	N-2	W17	N-2	N-2
Instrument Temperature (°F)	800	800	800	800	817	817	825	825	825	825
Instrument Speed (ft/s)	6.5	5.5	5.5	3.0	6.9	7.0	5.0	5.5	5	5
Name of Welding Technician	NK	TG	TG	JP	JR	JR	JR	JR	JR	JR
Notes			Smooth (Phase 2) / Textured (Phase 8A)							Smooth (Phase 2) / Textured (Phase 8A)
PEEL SPECIFICATIONS 80 mil - 22 kN/m (Hot Wedge Seam) - 126 lbs/in (Hot Wedge Seam)										
	147/171	168/151	156/191	198/192	185/171	164/160	152/166	178/190	155/178	164/178
	172/158	172/154	146/202	212/218	165/178	174/165	160/167	205/181	166/179	202/170
Peel Resistance (lbs/in)	157/160	175/162	198/198	208/215	174/178	168/158	153/160	183/178	167/153	154/198
	163/170	160/154	207/202	196/223	189/189	147/156	142/165	186/194	173/181	180/171
	166/175	166/155	213/164	208/210	191/164	170/150	140/166	179/185	158/190	170/165
Type of Rupture	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3
SHEAR SPECIFICATIONS 80 mil - 28 kN/m - 160 lbs/in										
	223	237	315	310	265	272	256	250	276	263
	232	254	311	290	240	273	257	267	279	265
Shear Resistance (lbs/in)	225	245	309	289	291	272	249	270	280	270
	236	257	327	286	294	265	256	264	281	269
	235	251	309	290	290	270	238	269	281	280
Type of Rupture	SE1	SE1	SE1	SE1	SE1	SE1	SE1	SE1	ALL	ALL

lotes:	

(2- 11103232 - Fusion Welder Calibration/Fusion Cal Form)

## **Instrument Calibration - Extrusion Welder**

Project: Phase 8A Terrapure

Client: Environmental

Prepared By: PL



Test Number	CE1	CE2	CE3	CE4	CE5	CE6	CE7	CE8	CE9
Date	2-Oct-17	3-Oct-17	17-Oct-17	1-Nov-17	9-Nov-17	10-Nov-17	10-Nov-17	14-Nov-17	24-Nov-17
Time	12:05	10:50	9:30	15:00	13:27	14:17	14:33	8:00	8:00
Air Temperature (°C)	16	17	10	8	9	-5	-5	2	2
Instrument Number	Ex 8	Ex 8	EX 5 - 1	EX - 75	EX 6	EX 15	EX 6	EX 15	EX 6
Pre-Heat Temperature (°F)	525	525	530	520	525	550	550	515	515
Barrel Temperature (°F)	525	525	530	525	525	525	535	525	510
Name of Welding Technician	JB	JB	NB	JB	LO	BK	JB	NB	NB
PEEL SPECIFICATIONS  80 mil  - 19 kN/m (Extrusion Seam)  - 109 lbs/in (Extrusion Seam)									
	131	150	192	155	130	143	123	148	160
	150	165	167	151	159	128	117	152	140
Peel Resistance (lbs/in)	147	159	164	191	165	119	126	148	171
	155	160	166	163	146	186	154	151	112
	127	145	189	180	153	167	145	153	125
Type of Rupture	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3
SHEAR SPECIFICATIONS 80 mil - 28 kN/m - 160 lbs/in									
	176	195	238	252	265	276	285	243	267
	172	192	250	259	247	299	301	241	267
Shear Resistance (Ibs/in)	182	184	220	248	253	294	305	239	272
	181	188	259	257	246	295	396	253	266
	185	187	245	253	241	260	301	255	266
Type of Rupture	SE1	SE1	SE1	SE1	SE1	SE1	SE1	SE1	SE1

Notes: The extrusion calibration coupons correspond with the material that was being extrusion welded.

i.e. Smooth on smooth or smooth on textured. All coupons were 80 mil on 80 mil unless noted otherwise.

(3- 11103232 - Extru Welder Calibration/Extrusion Cal Form)

# **Instrument Calibration - Extrusion Welder**

Project: Phase 8A

Client: Terrapure Environmental

Prepared By: PL



Test Number	CE10	CE11	CE12	CE13	CE14	CE15	CE16	CE17
Date	24-Nov-17	24-Nov-17	25-Nov-17	27-Nov-17	27-Nov-17	30-Nov-17	4-Dec-17	6-Dec-17
Time	13:52	13:30	9:55	8:00	15:30	10:46	15:25	11:20
Air Temperature (°C)	9	9	8	1	3	2	5	2
Instrument Number	EX 6	EX 6	EX 6					
Pre-Heat Temperature (°F)	515	515	515	515	515	515	515	535
Barrel Temperature (°F)	510	510	510	510	510	510	525	525
Name of Welding Technician	NB	NB	NB	NB	NB	NB	NB	NB
PEEL SPECIFICATIONS  80 mil - 19 kN/m (Extrusion Seam) - 109 lbs/in (Extrusion Seam)								
	175	194	152	109	135	143	142	137
	177	182	165	113	141	156	142	150
Peel Resistance (lbs/in)	194	181	180	115	138	142	147	135
	193	186	198	109	140	156	130	126
	185	196	199	111	144	153	133	138
Type of Rupture	SE3	SE3	SE3	SE3	SE3	SE3	SE3	SE3
SHEAR SPECIFICATIONS 80 mil - 28 kN/m - 160 lbs/in								
	269	252	246	246	245	240	222	175
	259	261	247	258	246	238	234	183
Shear Resistance (Ibs/in)	265	252	260	248	250	245	220	188
	264	250	252	233	244	243	235	189
	267	255	242	239	248	243	232	187
Type of Rupture	SE1	SE1	SE1	SE1	SE1	ALL	SE1	SE1

Notes: CE 17: welded 60 mil to 60 mil geomembrane

(3- 11103232 - Extru Welder Calibration/Extrusion Cal Form)

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	<b>S</b> 1	S2	S3		S4	<b>S</b> 5	S6
Upstream Membrane	P2	P3	P4		P5	P6	P7
Downstream Membrane	P1	P2	P3		P6	P7	P8
Date	29-Sep-17	29-Sep-17	29-Sep-17		2-Oct-17	2-Oct-17	2-Oct-17
Starting Time	9:05	9:40	10:23		8:15	8:38	9:00
Length (m)	38	38	38		24	24	24
Calibrating Number	CF1	CF1	CF1		CF2	CF2	CF2
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR		AIR	AIR	AIR
Date	29-Sep-17	29-Sep-17	3-Oct-17		2-Oct-17	2-Oct-17	2-Oct-17
Time	9:47	10:26	9:50	11:22	8:50	9:01	9:24
	49/49	45/45	43/43	40/40	38/38	39/38	40/37
Results			11:22	11:30			
			42/42	41/41			

Notes:			
			_

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	<b>S</b> 7	S8	S9	S10			
Upstream Membrane	P9	P10	P11	P5 - P11			
Downstream Membrane	P8	P9	P10	Phase 1B			
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17			
Starting Time	9:17	9:30	9:55	10:55			
Length (m)	24	24	24	47			
Calibrating Number	CF2	CF2	CF2	CF3			
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR	AIR			
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17			
Time	9:44	10:55	11:24	11:15	11:24	11:51	13:14
	42/39	45/45	45/44	44/42	45/45	40/39	42/42
Results		11:41		11:18	11:41	11:51	13:14
		39/38		46/46	36/35	37/37	42/42

Notes:		

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number				S11			
Upstream Membrane				P1 -P4			
Downstream Membrane				Phase 1B			
Date				3-Oct-17			
Starting Time				9:03			
Length (m)				27			
Calibrating Number				CF4			
Non-destructive Tests (AIR/VBOX)				AIR			
Date				3-Oct-17			
Time	13:22	13:28	13:37	9:50	9:57	10:08	10:20
	45/44	45/45	45/44	45/45	44/44	38/37	37/37
Results	13:22	13:28	13:37	9:57	10:08	10:20	
	56/55	42//41	36/36	42/42	36/35	37/37	

Notes:		

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S12	S13	S14	S15	S16	S17	S18
Upstream Membrane	P1	P5	P12	P13	P14	P15	P12 -P16
Downstream Membrane	Phase 1B	P12	P13	P14	P15	P16	1B
Date	3-Oct-17	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17
Starting Time	9:45	11:15	12:13	12:31	12:49	13:05	15:15
Length (m)	48	25.3	25.3	25.3	25.3	25.3	33.5
Calibrating Number	CF5	CF6	CF7	CF7	CF7	CF7	CF8
Non-destructive Tests (AIR/VBOX)	AIR						
Date	3-Oct-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17
Time	10:43	-	9:05	9:28	9:28	10:51	9:14
	38/38	-	49/49	44/43	49/48	42/42	43/43
Results	10:41						9:14
	37/37						41/41

Notes:	S13 did not pass. Seam will be fixed with extrusion, see repair R53
_	
_	

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number			S19	S20	S21	S22	
Upstream Membrane			P16	P17	P21	P18/P19	
Downstream Membrane			P17	P18	P20	P21	
Date			9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	
Starting Time			8:36	8:58	9:29	10:00	
Length (m)			23	23	4	23	
Calibrating Number			CF9	CF9	CF9	CF9	
Non-destructive Tests (AIR/VBOX)			AIR	AIR	AIR	AIR	
Date			9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	
Time	9:14	9:39	11;24	11:24	11:32	11:32	12:54
	47/44	50/48	47/46	53/52	49/48	55/54	47/46
Results	9:28	9:39				11:49	
	51/48	52/51				56/56	

Notes:			
-			_
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S23	S24	S25	S26	S27	S28	S29
Upstream Membrane	P20/P21	P19	P22	P23	P24	P25	P26
Downstream Membrane	P19	P22	P23	P24	P25	P26	P27
Date	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17
Starting Time	9:38	10:27	10:52	10:40	11:26	11:40	13:00
Length (m)	15	27	27	27	27	27	27
Calibrating Number	CF9	CF9	CF9	CF10/CF11	CF9	CF11	CF11
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR	AIR	AIR	AIR	AIR
Date	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17
Time	11:39	12:56	13:52	13:51	14:14	14:27	14:27
	52/51	56/55	53/52	48/47	44/43	51/51	44/44
Results	11:39		13:42	13:51	14:14		
	49/48		51/50	48/47	55/54		

Notes:	CF10 broke down
_	
-	

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S30	S31	<b>S32</b>	S33	S34	S35	S36
Upstream Membrane	P27	P28	P29	P30	P31	P32	P33
Downstream Membrane	P28	P29	P30	P31	P32	P33	P34
Date	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17
Starting Time	13:30	13:25	13:50	13:55	14:12	14:50	2:55
Length (m)	27	27	27	27	27	27	27
Calibrating Number	CF11	CF12	CF11	CF12	CF11	CF12	CF12
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR	AIR	AIR	AIR	AIR
Date	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17
Time	14:40	14:40	14:51	14:51	15:08	15:08	51/51
	46/45	45/44	45/43	51/50	43/42	52/52	15:18
Results							

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S37						
Upstream Membrane	P17-P34						
Downstream Membrane	PHASE 2						
Date	10-Nov-17						
Starting Time	9:01						
Length (m)	112						
Calibrating Number	CF13						
Non-destructive Tests (AIR/VBOX)	AIR						
Date	10-Nov-17						
Time	13:34	13:46	13:57	14:10	14:48	15:08	15:39
	47/46	42/41	45/43	40/39	45/44	47/46	46/45
Results	13:34	13:45	14:01	14:10	15:08	15:35	15:41
	43/43	42/41	42/41	47/46	48/47	49/49	46/45

Notes:			
-			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number				S38	S39	S40	S41
Upstream Membrane				P35	P36	P37	P38
Downstream Membrane				P11	P35	P36	P37
Date				23-Nov-17	23-Nov-17	23-Nov-17	23-Nov-17
Starting Time				13:45	13:24	14:37	15:01
Length (m)				23.7	23.7	23.7	23.7
Calibrating Number				CF 14	CF 14	CF 14	CF 14
Non-destructive Tests (AIR/VBOX)				AIR	AIR	AIR	AIR
Date				25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	16:38	14:19	14:30	12:50	11:50	9:40	9:10
	48/47	47/45	48/48	35/34	38/36	34/33	33/32
Results	14:19	14:27	14:39				9:16
	47/47	46/46	47/47				32/31

Notes:			
			_
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S42	S43	S44		S45	S46	S47
Upstream Membrane	P39	P40	P41		P42	P44	P45
Downstream Membrane	P38	P39	P40		P41	P43	P44
Date	24-Nov-17	24-Nov-17	24-Nov-17		24-Nov-17	24-Nov-17	24-Nov-17
Starting Time	8:30	9:09	10:08		11:09	12:18	13:00
Length (m)	23.7	23.7	27.7		12	38.4	38.4
Calibrating Number	CF 15	CF 16	CF 16		CF 17	CF 17	CF 17
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR		AIR	AIR	AIR
Date	25-Nov-17	25-Nov-17	25-Nov-17	27-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	9:40	10:36	10:36	9:24	11:32	11:30	11:50
	35/34	30/29	30/30	32/31	30/30	33/33	40/40
Results							

Notes:			
			_
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S48	S49	S50	S51	<b>S52</b>	S53	S54
Upstream Membrane	P46	P47	P43	P45/P44	P36-P41	P48	P49
Downstream Membrane	P45	P46	P4	P41	1B	P42	P48
Date	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17
Starting Time	13:32	13:47	14:17	14:55	13:45	15:42	15:51
Length (m)	20.5	16	38.4	11	41	12	12
Calibrating Number	CF 17	CF 17	CF 17	CF 17	CE 11	CF 17	CF 17
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR	AIR	VBOX	AIR	AIR
Date	25-Nov-17	27-Nov-17	25-Nov-17	27-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	14:02	9:45	14:00	11:50	13:30	13:20	13:50
	30/29	35/33	35/34	40/40	ок	32/31	30/30
Results							

Notes:			
			_

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S55	S56	S57	S58	S59	S60	S61
Upstream Membrane	P50	P42/P48/P49	P46	P47	P43/P44	P35	P52
Downstream Membrane	P49	P45	P49	P50	1B	1B	P53
Date	24-Nov-17	24-Nov-17	25-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	30-Nov-17
Starting Time	16:01	16:21	12:15	12:30	12:00	16:46	8:40
Length (m)	10	16.5	2	7	11.3	6.7	30.5
Calibrating Number	CF 17	CF 17	CF 18	CF 18	CE 13	CE 13	CF 19
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR	AIR	VBOX	VBOX	AIR
Date	27-Nov-17	25-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	30-Nov-17
Time	9:30	13:30	13:55	11:19	15:55	17:00	11:10
	33/33	30/30	33/32	33/32	ок	ок	32/31
Results		14:10					
		30/29					

Notes:	_
	_

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	S62	S63	S64		S65	S66	S67
Upstream Membrane	P34	P51	P51-P53		P52	P54	P53
Downstream Membrane	P51	P52	Phase 2		P54	1B	1B
Date	30-Nov-17	30-Nov-17	30-Nov-17		4-Dec-17	4-Dec-17	6-Dec-17
Starting Time	9:07	9:39	10:20		15:35	16:00	11:30
Length (m)	30.6	30.5	20.0		21.0	5.3	18.5
Calibrating Number	CF 19	CF 19	CF20		CE 16	CE 16	CE 17
Non-destructive Tests (AIR/VBOX)	AIR	AIR	AIR		VBOX	VBOX	VBOX
Date	30-Nov-17	30-Nov-17	30-Nov-17		4-Dec-17	4-Dec-17	6-Dec-17
Time	11:16	11:16	11:10	11:13	16:30	16:38	АМ
	34/33	32/32	33/33	40/40	ок	ок	ок
Results			11:10				
			35/34				

Notes:			
			_
•			

#### **Seams**

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL

Weld Number	S68	S69
Upstream Membrane	P52	P56
Downstream Membrane	P56	P54
Date	6-Dec-17	6-Dec-17
Starting Time	12:00	12:30
Length (m)	9.5	6.8
Calibrating Number	CE 17	CE 17
Non-destructive Tests (AIR/VBOX)	VBOX	VBOX
Date	6-Dec-17	6-Dec-17
Time	PM	PM
	ок	ок
Results		

Notes:	



(4- 11103232 - Seams/S1 to S69)

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R1	R2	R3	R4	R5	R6
Location	1B/1B/P11	1B/P10/P11	1B/1B/P10	1B/P10/P9	P9/P10	P8/P9
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	13:09	13:20	13:25	13:27	13:41	13:59
Calibrating Number	CE 1	CE 1	CE 1	CE 1	CE 1	CE 1
Dimensions (m)	.3 X .7	1.5 X .75	.3 X .7	.3 X .7	1.5 X .75	1.5 X .75
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Tee Junction	Tee Junction	Tee Junction	Tee Junction	Oval Patch	U Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	14:30	14:31	14:36	14:38	13:24	14:35
Results	ок	ok	ок	ок	oK	ок
itodulio						

Notes:			
-			
-			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R7	R8	R9	R10	R11	R12
Location	P9/1B	1B/1B/P9	P9/1B	1B/P9/P5	P8/1B/1B	P8
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	13:29	14:12	14:12	14:14	14:20	14:26
Calibrating Number	CE 1	CE 1	CE 1	CE 1	CE 1	CE 1
Dimensions (m)	.3 X .7	.5 X .3	0.3	.5 X .5	1.5 X .5	.5 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Tee Junction	Line Extrusion	Tee Junction	Tee Junction	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	14:38	14:39	14:40	14:41	14:43	14:45
Results	ОК	ок	ок	ОК	ОК	OK

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R13	R14	R15	R16	R17	R18
Location	P8/P7/1B	1B/1B/P7	P6/P7/1B	1B/1B/P6	P5/P6/1B	1B/1B/P5
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	14:30	14:35	14:40	14:47	14:51	14:56
Calibrating Number	CE 1					
Dimensions (m)	.75 X .5	1.5 X .5	1 X .5	.5 X .5	.5 X .5	.5 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Tee Junction					
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17	2-Oct-17
Time	14:47	14:49	14:57	14:59	15:01	15:06
Results	ОК	ОК	ок	ОК	ОК	ОК

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R19	R20	R21	R22	R23	R24
Location	1B	P4/1B	1B/P3/P4	1B/1B/P3	P2/P3/1B	1B/1B/P2
Date	2-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	15:06	11:30	11:35	11:40	11:47	12:00
Calibrating Number	CE 1	CE 2	CE 2	CE 2	CE 2	CE 2
Dimensions (m)	.5 X .5	.5 X .5	.5 X 1	.5 X .5	1.5 X .5	.5 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Tee Junction	Tee Junction	Tee Junction	Tee Junction
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	2-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	15:08	13:20	13:22	13:24	13:29	13:30
Results	ок	ок	ок	ок	ок	ок

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R25	R26	R27	R28	R29	R30
Location	1B/P1/P2	1B/1B/P1	P1/1B	P1/1B	P1/1B	P1/1B
Date	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	13:00	13:05	13:13	13:15	13:20	13:25
Calibrating Number	CE 2	CE 2	CE 2	CE 2	CE 2	CE 2
Dimensions (m)	.75 X .5	.75 X .5	.75 X .5	3.0	1 X .5	2 X .75
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Tee Junction	Tee Junction	Oval Patch	Line Extrusion	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	13:31	13:32	13:32	13:34	13:35	13:38
Results	ок	ок	ОК	ок	OK	ок

Notes:			
-			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R31	R32	R33	R34	R35	R36
Location	P1/1B	P2/P3	P3/P4	P3/P4	P3/P4	P3/P4
Date	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	13:30	13:42	13:51	13:59	14:04	14:10
Calibrating Number	CE 2	CE 2	CE 2	CE 2	CE 2	CE 2
Dimensions (m)	1.0	1.0	1.0	1.0	0.8	0.8
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	U Patch	U Patch	U Patch	Line Extrusion	Line Extrusion	Line Extrusion
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17	3-Oct-17
Time	13:46	13:49	14:07	14:09	14:11	14:17
Results	ок	OK	ОК	ок	ок	ОК
Notes:						

tes:	
-	

Project: Phase 8A

Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R37	R38	R39	R40	R41	R42
Location	P11	P11	P11	P11	P11	P5/P12
Date	17-Oct-17	17-Oct-17	17-Oct-17	17-Oct-17	17-Oct-17	1-Nov-17
Time	13:56	13:56	13:56	13:56	13:56	15:36
Calibrating Number	CE 3	CE 4				
Dimensions (m)	0.1	0.1	0.1	0.1	0.1	1 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Bead	Bead	Bead	Bead	Bead	U Patch
Non-destructive Tests	-	-	-	-	-	VBOX
Date	-	-	-	-	-	10-Nov-17
Time	-	-	-	-	-	13:20
Results -	-	-	-	-	-	ок

Notes: R37 - R40: Beads were placed on small wrinkled area of the membrane to reinforce the area. (No holes in the membrane)
The wrinkles were caused by high winds the blew the membrane over. No testing was done since the repair was over a
wrinkled spot with no holes. Start Time: 1:45 PM, Finish Time: 2:00 PM, Air temp: 15°C

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R43	R44	R45	R46	R47	R48
Location	P5/P12	P5/P12/1B	1B/P12	1B/1B/P12	P12/ P13/1B	1B/1B/P13/P14
Date	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17
Time	15:50	16:10	16:16	15:55	16:00	16:05
Calibrating Number	CE 4	CE 4	CE 4	CE 4	CE 4	CE 4
Dimensions (m)	.75 X .4	.3 X .3	.3 X .5	.2 X .4	.5 X .3	2 X .3
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Oval Patch	Tee Junction	Tee Junction	Double Tee Junction
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	13:20	13:25	13:26	13:40	13:40	13:45
Results	ок	ок	ок	ОК	ок	ок
itedulio						

lotes:				
•				
•				_

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R49	R50	R51	R52	R53	R54
Location	1B/1B/P14/P15	1B/1B/P16/P15	P15/P16	P16/1B	P5/P12	P5/P12
Date	1-Nov-17	1-Nov-17	1-Nov-17	1-Nov-17	9-Nov-17	9-Nov-17
Time	16:26	16:30	16:51	16:41	13:45	14:15
Calibrating Number	CE 4	CE 4	CE 4	CE 4	CE 5	CE 5
Dimensions (m)	1.5 X .3	1.25 X .3	4.0	.5 X 3	25.0	.3 X .3
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Double Tee Junction	Double Tee Junction	Line	Oval Patch with Line	Line	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	13:45	13:46	13:50	15:55	13:20	13:20
Results	ок	ок	ок	ок	ок	ок

Notes:	

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R55	R56	R57	R58	R59	R60
Location	P5/P12	P14/P15	P15/P16	P16/P17	P15/P16	P16/P17
Date	9-Nov-17	9-Nov-17	9-Nov-17	9-Nov-17	10-Nov-17	10-Nov-17
Time	14:25	14:55	15:01	15:09	14:52	15:00
Calibrating Number	CE 5	CE 5	CE 5	CE 5	CE 7	CE 7
Dimensions (m)	.5 X .3	1 X .5	.5 X .5	.75 X 1	.75 X .5	1 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Oval Patch	U Patch	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	13:20	13:45	13:50	13:55	15:50	15:55
Results	ок	ОК	ок	ОК	ОК	ОК
nesulis						

Notes:			
•			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R61	R62	R63	R64	R65	R66
Location	P21/P20/P18	P21/P20/P19	P18/P19/P20	P22/P23	P23/P24	P23/P24
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	14:15	14:20	14:30	14:40	14:50	15:02
Calibrating Number	CE 6	CE 6	CE 6	CE 6	CE 6	CE 6
Dimensions (m)	.75 X .5	.75 X .5	.75 X .5	.5 X .5	2 X .5	1.5 X .75
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Oval Patch	Oval Patch	Oval Patch	U Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	16:05	16:07	16:11	16:23	16:25	15:05
Results	ок	ОК	ок	ок	ОК	ок

Notes:			
-			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R67	R68	R69	R70	R71	R72
Location	P17/P18/1B	P21/P18/1B	P21/P19/1B	1B/P19	P24/P25	P29/P30
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	15:25	15:34	15:40	15:43	15:15	15:30
Calibrating Number	CE 7	CE 7	CE 7	CE 7	CE 6	CE 6
Dimensions (m)	.75 X .5	1 X .5	.5 X .3	.5 X .3	1 X 1	2 X 1
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch / U Patch					
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	16:01	16:03	16:16	16:16	16:27	15:00
Results -	ок	ОК	ок	ОК	ОК	OK

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R73	R74	R75	R76	R77	R78
Location	1B/P19/P22	P16	P16	P16	P16	Phase 2/P22
Date	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17	10-Nov-17
Time	15:51	15:27	15:27	15:27	15:27	16:00
Calibrating Number	CE 7	CE 7	CE 7	CE 7	CE 7	CE 7
Dimensions (m)	1 X .75	0.2	0.2	0.2	0.4	2 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Bead	Bead	Bead	Bead	Oval Patch
Non-destructive Tests	VBOX	-	-	-	-	VBOX
Date	10-Nov-17	-	-	-	-	10-Nov-17
Time	16:17	-	-	-	-	16:11
Results	OK	-	-	-	-	OK

**Notes:** R74 - R77: Beads were placed on small wrinkled area of the membrane to reinforce the area. (No holes in the membrane) The wrinkles were caused by high winds the blew the membrane over. No testing was done since the repair was over a wrinkled spot with no holes

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R79	R80	R81	R82	R83	R84
Location	2/P22/P23	2/P23	P23/P24/2	P24/P25/2	2/P25	2/P26/P25
Date	10-Nov-17	10-Nov-17	10-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17
Time	16:05	16:20	16:19	8:25	8:45	8:47
Calibrating Number	CE 7	CE 7	CE 7	CE 8	CE 8	CE 8
Dimensions (m)	.5 X .3	1 X .3	1 X .3	3 X 1	.3 X .5	.5 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Oval Patch	3 X Oval Patch, 2 X Line	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	10-Nov-17	10-Nov-17	10-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17
Time	16:01	16:29	16:25	9:04	9:04	9:07
Results	ок	ок	ОК	ОК	ок	ОК

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R85	R86	R87	R88	R89	R90
Location	P27/P26/2	P27/P28/2	P28/P29/2	P29/2	P29/P30/2	P30/P31/2
Date	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17
Time	9:07	9:30	9:45	9:50	10:04	10:11
Calibrating Number	CE 8	CE 8	CE 8	CE 8	CE 8	CE 8
Dimensions (m)	.4 X .4	1 X .5	1 X 1	.75 X .3	.75 X .5	1 X 1
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	2 X Oval Patch	Oval Patch	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17
Time	9:15	9:45	9:55	10:05	10:10	10:52
Results	ок	ок	ок	ok	ок	ок
itodaito						

Notes:			
•			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R91	R92	R93	R94	R95	R96
Location	P31/2	P31/2	P31/P32/2	P32/P33/2	P33/P34/2	P11/P35
Date	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	24-Nov-17
Time	11:30	11:35	11:48	11:55	11:20	9:00
Calibrating Number	CE 8	CE 9				
Dimensions (m)	.3 X .3	.75 X .5	1.5 X 1	2 X .5	.5 X .3	1 X 3
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	U Patch				
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	14-Nov-17	25-Nov-17
Time	11:57	11:57	11:58	12:01	12:08	PM
Results	ок	ок	ок	ок	ок	ок

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R97	R98	R99	R100	R101	R102
Location	P11/P35	P11/P35	P11/P35	P36/P35	P37/P36	P37/P38
Date	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17	24-Nov-17
Time	9:27	9:33	9:47	10:00	10:25	10:35
Calibrating Number	CE 9	CE 9	CE 9	CE 9	CE 9	CE 9
Dimensions (m)	.5 X .5	.5 X .5	1 X .75	1.5	.5 X 1	1.0
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Oval Patch	Line	U Patch	Line
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	PM	PM	PM	PM	PM	PM
Results	ок	ОК	ОК	ОК	ОК	ок
Iveanita						

Notes:			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R103	R104	R105	R106	R107	R108
Location	P38/P39	P41/P40	P41/P40	P44/P41	P44/P41/P45	P41/P42/P45
Date	24-Nov-17	24-Nov-17	24-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	11:08	16:20	16:30	10:55	11:34	11:11
Calibrating Number	CE 9	CE 11	CE 11	CE 12	CE 12	CE 12
Dimensions (m)	4 / .5 X .5	.3 X .3	.5 X .5	.75 X .5	2 X .3	.75 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Line/Oval Patch	Oval Patch	Oval Patch	Oval Patch	Tee Junction	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	PM	13:40	13:45	14:15	14:15	14:15
Results	ок	ок	ок	ок	ок	ок

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: Pl



Weld Number	R109	R110	R111	R112	R113	R114
Location	P48/P42/P45	P45/P46/P49	P48/P49/P45	P49/P50/P46	P45/P46	P45/P48
Date	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17	25-Nov-17
Time	11:35	13:30	13:44	14:27	15:00	15:11
Calibrating Number	CE 12	CE 12	CE 12	CE 12	CE 12	CE 12
Dimensions (m)	1 X .75	.75 X .75	1.5 X .5	1 X 1	1.5 X .5	1.5 X .5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Oval Patch	Tee Junction	Oval Patch	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	25-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	14:20	11:47	11:48	11:43	11:46	11:49
Results	ок	ОК	ок	ОК	ОК	ок
iveanita						

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R115	R116	R117	R118	R119	R120
Location	P38/P39	P37/P38	P40/P39	P41/P40	P42/P41	P48/P42
Date	25-Nov-17	25-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	16:00	15:50	9:19	9:30	9:37	9:45
Calibrating Number	CE 12	CE 12	CE 13	CE 13	CE 13	CE 13
Dimensions (m)	1.5 X .5	2.5	4 X 1	2	1	1
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	Line	Line/Oval Patch	Line	Line	Line
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	11:50	11:52	11:20	11:22	11:26	11:27
Results	OK	OK	ОК	OK	ОК	ОК

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R121	R122	R123	R124	R125	R126
Location	P48/P49	P49/P50	P46/P47	P45/P46	P44/P45	P43/P44
Date	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	9:56	10:04	10:15	10:24	10:51	10:30
Calibrating Number	CE 13					
Dimensions (m)	1	1	1 X 1	1.5	1.5	1.5
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Line	Line	U Patch	Line	Line	Line
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	11:28	11:29	11:31	11:32	11:33	11:34
Results	ОК	ок	ок	ОК	ок	ок

Notes:			
-			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R127	R128	R129	R130	R131	R132
Location	P4/P43	P44	1B/P4/P43	P37	P36	P11/P35
Date	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	10:43	13:55	13:22	14:47	15:12	17:07
Calibrating Number	CE 13	CE 13 / CE 14	CE 13 / CE 14	CE 13 / CE 14	CE 13 / CE 14	CE 13 / CE 14
Dimensions (m)	.75 X 1	2 X .5	1.5 X .75	.3 X .3	.3 X .3	.3 X .3
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	U Patch	Line/Oval Patch	Oval Patch	Oval Patch	Oval Patch	Oval Patch
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX	VBOX
Date	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17	27-Nov-17
Time	11:35	16:00	16:01	16:02	16:04	17:35
Results	ок	ок	ок	ок	ок	ок
itosuits	_					

Notes:			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL



Weld Number	R133	R134	R135	R136	R137
Location	P11/1B	P34/P51	Phase 2/P34/P51	Phase 2/P52/P51	Phase 2/Phase 2/P52/P53
Date	27-Nov-17	30-Nov-17	30-Nov-17	30-Nov-17	30-Nov-17
Time	17:20	11:11	11:06	10:59	10:56
Calibrating Number	CE 13 / CE 14	CE 15	CE 15	CE 15	CE 15
Dimensions (m)	.3 X .3	1 X 2	2 X .5	.5 X .3	1 X .3
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Oval Patch	U Patch	Oval Patch	Tee Junction	2 X Tee Junction
Non-destructive Tests	VBOX	VBOX	VBOX	VBOX	VBOX
Date	27-Nov-17	30-Nov-17	30-Nov-17	30-Nov-17	30-Nov-17
Time	17:36	АМ	11:10	11:05	11:04
Results	ОК	OK	ОК	ОК	ок

Notes:			
•			

Project: Phase 8A
Client: Terrapure
Environmental

Prepared By: PL

Weld Number	R138	R139
Location	P52/P53	P51/P52
Date	30-Nov-17	30-Nov-17
Time	10:55	11:21
Calibrating Number	CE 15	CE 15
Dimensions (m)	1.0	3.0
Description (Tee Junction/ Oval Patch/ U patch/ Line extrusion)	Line	Line
Non-destructive Tests	VBOX	VBOX
Date	30-Nov-17	30-Nov-17
Time	AM	AM
Results	ОК	ок

Notes:				



#### **Verification of Destructive Tests of Welds**

Project: Phase 8A Terrapure

Client: Terrapure Environmental

Prepared By: PL



Test Number	DS1	DS2	DS3	DS4	DS5	DS6	DS7
Date	02-Oct-17	03-Oct-17	09-Nov-17	10-Nov-17	10-Nov-17	25-Nov-17	25-Nov-17
Time	12:40	1:17	9:51	13:10	13:37	15:10	15:11
Weld Number	S9	S2	S16	S26	S34	S48	S56
Location	P10/P11	P2/P3	P14/P15	P23/P24	P31/P32	P45/P46	P48/P45
Air Temperature (°C)	16	17	5	-6	-5	9	9
PEEL SPECIFICATIONS  80 mil - 22 kN/m (Hot Wedge Seam) - 126 lbs/in (Hot Wedge Seam)							
Peel Resistance (lbs/in)	141/149 133/139 129/134 132/136	131/127 131/131 143/126 135/122	161/158 165/157 163/149 158/177	175/186 198/197 212/172 147/193	166/150 180/162 170/164 171/148	185/180 180/179 164/175 177/160	190/167 156/164 151/181 158/157
Type of Rupture	132/133 SE3	121/142 SE3	169/151 SE3	176/164 SE3	169/190 SE3	158/163 SE3	200/163 SE3
SHEAR SPECIFICATIONS 80 mil - 28 kN/m - 160 lbs/in	923	GEO	GEO	320	<u> </u>	GEO	320
	172 161	182 185	258 259	275 294	274 291	271 280	270 276
Shear Resistance (lbs/in)	174	183	257	298	288	278	268
	171	177	254	288	305	275	282
	183	179	263	295	271	282	278
Type of Rupture	SE1						

Notes:	All test coupons are smooth 80 mil on smooth 80 mill				

(6- 11103232 - Destructive Tests/Destructive Test Form)

#### **Verification of Destructive Tests of Welds**

Project: Phase 8A Terrapure Client: Environmental

Prepared By: PL

80 mil - 28 kN/m - 160 lbs/in

Shear Resistance (lbs/in)

Type of Rupture



Notes:	

268 278

277

283

277

SE1

270

269

272

270

267

ALL



2 of 2 (6- 11103232 - Destructive Tests/Destructive Test Form)

Appe Installer's Quality Control I	ndix 12 Manual



# **Installation & Quality Control Manual**





#### **Contents**

1.0	Introduction	2
2.0	Geomembrane Installation	
2.1	Subgrade Surface	
2.2	Crest Anchorage System	
2.3	Preparation for Geomembrane Deployment	
2.4	Field Panel Placement	3
2.5	Method of Deployment	
2.6	Field Seaming	4
3.0	Seam Testing - Geomembranes	7
3.1	Air Pressure Testing	
3.2	Vacuum Testing	8
3.3	Destructive Testing	10
4.0	Defects and Repairs	11
4.2	Repair Procedures	
Appe	ndix A- Field Forms and Procedures	14
	ndix B - Notes On Filling in Documents	



#### 1.0 Introduction

This manual addresses the Quality Control Program developed and utilized by Terrafix Environmental Technology, Inc. installation personnel to assure the quality of workmanship and the installation integrity of geomembranes. Terrafix Inc. recognizes that careful and specific documentation of the installation is required to substantiate this Quality Control Program.

#### 2.0 Geomembrane Installation

#### 2.1 Subgrade Surface

- **2.1.1** The general and/or earthwork contractor shall be responsible for preparing and maintaining the subgrade in a condition suitable for installation of the liner unless specifically agreed otherwise.
- **2.1.2** Surfaces to be lined shall be smooth and free of debris, roots, and angular or sharp rocks larger than three quarter 3/4 inches (9mm) in diameter to a depth of four 4 inches (98mm). All fill shall consist of well-graded material free of organic, trash, clay balls or other damaging matter. No sharp edged stones, stones larger than one 1 inch (24.5mm) in diameter or hard objects shall be allowed within the top four 4 inches (100mm) of the subgrade. The surface shall be compacted in accordance with design specifications but in no event below the minimum required to provide a firm unyielding foundation sufficient to permit the movement of vehicles and welding equipment over the subgrade without causing rutting or other damaging effects. The subgrade shall have no sudden sharp or abrupt changes in grade.
- **2.1.3** The General and/or Earthwork Contractor shall protect the subgrade from desiccation, flooding and freezing, protection, if required, may consist of a thin plastic protective cover (or other material as approved by the engineer) installed over the completed subgrade until such time as the placement of geomembrane liner begins.

Subgrades found to have desiccation cracks greater than 1/2 inch/12.3mm in width or depth, or which exhibit swelling, heaving or other similar conditions shall be replaced or reworked by the general and/or earthwork contractor to remove these defects.

**2.1.4** Surface Acceptance: Upon request, Terrafix Inc., will provide the Owner's and Contractor's Representatives with a written acceptance of the surface to be lined. (See Appendix A) This acceptance will be limited to an amount of area that Terrafix Inc. is capable of lining during a particular work shift. Subsequent repairs to the subgrade and the surface shall remain the responsibility of the earthwork contractor.



#### 2.2 Crest Anchorage System

- **2.2.1** The general and/or the earthwork contractor to lines and widths shown on the design drawings prior to geomembrane placement shall excavate the anchor trench.
- **2.2.2** Anchor trenches excavated in clay soils susceptible to desiccation cracks should be excavated only the distance required for that day's liner placement to minimize the potential of desiccation cracking of the clay soils.
- **2.2.3** Corners in the anchor trench shall be slightly rounded where the geomembrane adjoins the trench to minimize sharp bends in the geomembrane.

#### 2.3 Preparation for Geomembrane Deployment

- **2.3.1** Panel Layout: Prior to commencement of liner deployment, layout drawings shall be produced to indicate the panel configuration and location of seams for the project.
- **2.3.2** Identification: Each panel used for the installation shall be given a numeric or alphanumber identifier consistent with the layout drawing. This identification number shall be related to a manufacturing roll number that identifies the resin type, batch number, and date of manufacture.

#### 2.4 Field Panel Placement

- **2.4.1** Location: Terrafix Inc. will attempt to install field panels at the location indicated on the layout drawing. If the panels are deployed in a location other than that indicated on the layout drawings, the revised location shall be noted in the field on an as-built drawing that will be modified at the completion of the project to reflect actual panel locations.
- **2.4.2** Weather Conditions: Geomembrane deployment shall not be done during any precipitation, in the presence of excessive moisture (i.e. fog, dew), in an area of standing water, or during high winds.

#### 2.5 Method of Deployment

**2.5.1** The method and equipment used to deploy the panels must not damage the geomembrane or the supporting subgrade surface.



- **2.5.2** No personnel working on the geomembrane will smoke, wear shoes that can damage the geomembrane, or engage in actions that could result in damage to the geomembrane.
- **2.5.3** Adequate temporary loading and/or anchoring, (i.e. sandbags, tires), which will not damage the geomembrane, will be placed to prevent uplift of the geomembrane by wind.
- **2.5.4** The geomembrane will be deployed in a manner to minimize wrinkles.
- **2.5.5** Any damage to a panel of geomembrane will be repaired in accordance with paragraph 4.3. Any area of a panel seriously damaged (torn, twisted, or crimped) will be marked, cut out, and removed from the work area with resulting seaming and/or repairs performed in accordance with Paragraph 4.3 of this document.

#### 2.6 Field Seaming

- **2.6.1** Layout: In general seams shall be oriented parallel to the slope, i.e., oriented along, not across the slope. Whenever possible, horizontal seams should be located not less than five 5 feet (1.52 m) from the toe of the slope. Each seam made in the field shall be numbered in a manner that is compatible with the panel layout drawing for documentation of seam testing results.
- **2.6.2** Personnel: All personnel performing seaming operations shall be trained in the operation of the specific seaming equipment being used and will qualify by successfully welding a test seam as described in Paragraph 2.5.3. The project foreman will provide direct supervision of all personnel seaming to verify proper welding procedures are followed.

#### 2.6.3 Equipment:

Fusion Welding: Fusion Welding consists of placing a heated wedge, mounted on a self propelled vehicular unit, between two (2) overlapped sheets such that the surface of both sheets are heated above the polyethylene's melting point. After being heated by the wedge, the overlapped panels pass through a set of preset pressure wheels that compress the two (2) panels together so that a continuous homogenous fusion weld is formed. The fusion welder is equipped with a temperature readout device that continuously monitors the temperature of the wedge.

Extrusion Fillet Welding: Extrusion fillet welding consists of introducing a ribbon of molten resin along the edge of the seam overlap of the two (2) sheets to be welded. The molten polymer causes some of the material of each sheet to be liquefied resulting in a homogeneous bond between the molten weld bead and the surfaces of the sheets. The extrusion welder is equipped with gauges giving the temperature at the nozzle.



**2.6.4** Weather Conditions: Terrafix Inc., relies on the experience of the project Superintendent and the results of test seams to determine seaming restrictions by weather. Many factors, such as ambient temperature, humidity, wind, sunshine, etc., can affect the integrity of field seams and must be taken into account when deciding whether or not seaming should proceed. Test seams, as described in Paragraph 2.5.3. are required prior to daily production seaming to determine if the weather conditions will affect Terrafix Inc.'s, ability to produce quality seams. Additional non-destructive and destructive testing of production seams substantiates the decision made by the Project Superintendent to seam on any given day.

#### **2.6.2** Seam Preparation:

**2.6.2.1** Fusion Welding: Overlap the panels of Geomembrane approximately six 6 inches (150mm). Clean the seam area prior to seaming to assure the area is clean and free of moisture, dust, dirt, and debris of any kind. No grinding is required for fusion welding.

Adjust the panels so that seams are aligned with the fewest possible number of wrinkles and "fishmouths".

A moveable protective layer may be used, at the discretion of the Terrafix Inc., Project Superintendent, directly below the overlap of geomembrane.

**2.6.2.2** Extrusion Welding: Overlap the panels of Geomembrane a minimum of four 4 inches (98mm). Temporarily bond the panels of Geomembrane to be welded, taking care not to damage the geomembrane.

Clean the seam area prior to seaming to assure the area is clean and free of moisture, dust, dirt and debris of any kind. Grind seam overlap prior to welding within one 1 hour of welding operation in a manner that does not damage the Geomembrane.

Purge the extruder prior to beginning the seam remove all heat-degraded extrudite from the barrel. Keep welding rod clean and minimize contact with the ground.

- **2.6.3** Test Seams: Test seams shall be performed at the beginning of each seaming period and at least once each five 5 hours for each seaming apparatus used that day. Test seams shall be made on fragment pieces of the geomembrane liner and under the same conditions as the actual field installation.
- **2.6.3.1** Test Seam Length: The test seam shall be at least three 3 feet (0.91m) long and should be made by joining two 2 pieces of geomembrane at least 9 inches (220.5mm) in width.



**2.6.3.2** Sample Procedure: Visually inspect the seam for squeeze out, footprint, pressure, and general appearance.

Two random samples one 1 inch (24.5mm) wide shall be cut from the test seam. The specimens shall then be tested in peel using a field tensiometer and shall not fail in the seam. If a specimen fails the entire procedure shall be repeated.

If any of the second set of specimens fail, the seaming apparatus shall not be accepted and shall not be used for seaming until the deficiencies are corrected and a passing test seam is achieved.

After completion of the test the remaining portion of test seam can be discarded. Documentation of the test seams will be maintained listing seamer identification number, welder's name, temperature control setting and test results.

Passing test results records shall be maintained on Terrafix Inc. Form 1 (Pre-weld qualification testing) as enclosed.

**2.6.3.3** General Seaming Procedures: Seaming shall extend to the outside edge of panels to be placed in the anchor trench. While welding a seam, monitor and maintain the proper overlap. Inspect seam area to assure area is clean and free of moisture, dust, dirt, and debris of any kind. Monitor temperature gauges to assure proper settings are maintained and that the seaming apparatus is operating properly. Align wrinkles at the seam overlap to allow welding through the wrinkle.

Fishmouths or wrinkles at seam overlaps that cannot be welded through shall be cut along the ridge in order to achieve a flat overlap. The cut fishmouth or wrinkle shall be seamed. Any portion where the overlap is inadequate shall be patched with an oval or round patch of the same geomembrane extending a minimum of 6 inches (147mm) beyond the cut in all directions.

All cross/butt seams between two 2 rows of seamed panels shall be welded during the coolest time of the day to allow for contraction of the geomembrane.

All "T" joints shall have the overlap from the wedge welder seam trimmed back to allow an extrusion fillet weld. Then grind two 2 inches (49.5mm) minimum on either side of the wedge welder seam and extrusion weld all of the area prepared by grinding.\



#### 3.0 Seam Testing - Geomembranes

Terrafix Inc. installation crews will non-destructively test all field seams over their full-length using air pressure, vacuum or other approved test methods, to verify the continuity and integrity of the seams.

#### 3.1 Air Pressure Testing

The welded seam created by Terrafix Inc's., fusion welding process is composed of two distinct welded seams separated by an un-welded channel approximately 3/8 of an inch (9mm) wide. The presence of the un-welded channel between the two welded seams permits Terrafix Inc's., fusion seams to be tested by inflating the sealed channel with air to a predetermined pressure and observing the stability of the pressurized channel over time.

- **3.1.1** Equipment for Air Testing: An air pump (manual or motor driven) capable of generating and sustaining a pressure between 25 to 30 psi., a rubber hose with fittings and connections, a sharp hollow needle with a pressure gauge capable of reading and sustaining a pressure between 25 to 30 psi. (or other approved pressure feed device).
- **3.1.2** Procedure for Air Testing: Seal both ends of the seam to be tested. Insert needle or other approved pressure feed service into the sealed channel created by the fusion weld.

Inflate the test channel to a pressure between 25 to 30 psi, in accordance with the following schedule, close valve, and observe initial pressure after approximately 2 minutes.

#### Initial Pressure Schedule*

Material Thickness (Mil)	Minimum Pressure	Maximum Pressure
40	25	30
60	27	30
80	30	30
100	30	30

^{*} Initial pressure settings are read after a two minute "relaxing period". The purpose of this "relaxing period" is to permit the air temperature and pressure to stabilize.

Observe and record the air pressure five 5 minutes after "relaxing period" ends and initial pressure setting is used. If loss of pressure setting is used. If loss of pressure exceeds the following or if the pressure does not stabilize, locate faulty area and repair in accordance with Paragraph 4.3.



Maximum Permissible Pressure Differential, After 5 Minutes

Material Thickness (Mil)	Pressure Difference
40	4 psi
60	4 psi
80	4 psi
100	4 psi

At the conclusion of the pressure test the end of the seam opposite the pressure gauge will be cut to ensure that the seam is not blocked. If the seam is blocked then the test will have to be repeated after the blockage is corrected. Remove needle or other approved pressure feed device and seal resulting hole by extrusion welding. Record test results on Terrafix Inc. Form 3 (Seam Recording and Air Testing) as enclosed.

**3.1.3** In the event of a Non-Complying Air Pressure Test: Check seam end seals and retest seams. If non-compliance with specified maximum pressure differential reoccurs, cut a 1 inch (24.5mm) samples from each end of the seam and additional samples at the distance specified in Paragraph 3.4.3.1. Perform destructive peel tests on the samples using the field tensiometer.

If all samples pass destructive testing remove the overlap left by the wedge welder and vacuum test the entire length of seam in accordance with Paragraph 3.3. If a leak is located by the vacuum test, repair by extrusion welding. Test the repair by vacuum testing. If vacuum testing discovers no leak, the seam will be considered complete. If one or more samples fail the peel tests, additional samples will be taken in accordance with Paragraph 3.4.3.

When two 2 passing samples are located, the seam between these two 2 locations will be considered non-complying. The overlap left by the wedge welder will be heat tacked in place along the entire length of seam and the entire length of seam will be extrusion welded. Test the entire length of the repaired seam by vacuum testing in accordance with Paragraph 3.3.

## 3.2 Vacuum Testing

This test is used when the geometry of the weld makes air pressure testing impossible or impractical or when attempting to locate the precise location of a defect believed to exist after air pressure testing.





- **3.2.1** Equipment for Vacuum Testing: Vacuum box assembly consisting of a rigid housing, a transparent viewing window, a soft neoprene gasket attached to the bottom, port hole or valve assembly and a vacuum gauge. Vacuum pump assembly equipped with a pressure controller and pipe connections, a rubber pressure/vacuum hose with fittings and connections and bucket and means to apply a soapy solution.
- **3.2.2** Procedure for Vacuum Testing: Trim excess overlap from seam, if any. Turn on the vacuum pump to reduce the vacuum box to approximately 3 in. of Hg, ie., (3 psi gauge). Apply a generous amount of a solution of strong liquid detergent and water to the area to be tested.

Place the vacuum box over the area to be tested and apply sufficient downward pressure to "seat" the seal strip against the liner. Close the bleed valve and open the vacuum valve. Apply a minimum of 3 in. Hg vacuum to the area as indicated by the gauge on the vacuum box. Ensure that a leak tight seal is created.

For a period of not less than 30 seconds, examine the geomembrane through the viewing window for the presence of soap bubbles. If no bubbles appear after 30 seconds, close the vacuum valve and open the bleed valve, move the box over the next adjoining area with a minimum 3 in. overlap, and repeat the process.

**3.2.3** Procedure for non-complying test: Mark all areas where soap bubbles appear and repair the marked areas in accordance with Paragraph 4.3. Retest repaired areas.



### 3.3 Destructive Testing

The procedure of destructive testing is to determine and evaluate seam strength. These tests require direct sampling and thus subsequent patching. Therefore, destructive testing should be held to a minimum to reduce the amount of repairs to the geomembrane.

- **3.3.1** Procedure for Destructive Testing: Destructive test samples shall be marked and cut out randomly at a minimum average frequency of one test location every 1000 feet (300m) of seam length. Additional destructive tests may be taken in areas of contamination, offset welds, visible crystallinity or other potential cause of faulty welds. Field test 5 coupons in peel and 5 coupons in shear and at least 4 out of the five 5 coupons must pass the tensile strength properties in both peel and shear. Minimum strength of field seams when tested in shear shall be 90 percent and 60 percent in peel of the unseamed liner.
- **3.3.2** Sample Size: The sample should be twelve 12 inches wide (305mm) with a seam 14 inches (356mm) long centered lengthwise in the sample. The sample may be increased in size to accommodate independent laboratory testing by the owner at the owner's request or by specific project specifications.

A one 1 inch (24.5mm) sample shall be cut from each end of the test seam for field testing. The two one 1 inch (24.5mm) samples shall be tested in the field in a tensiometer for peel. If any field sample fails to pass, it will be assumed the sample fails destructive testing. The procedure outlined in Paragraph 3.4.3. shall be followed to locate passing samples to send to the laboratory.

If the sample passes the field test, the remaining portion of the sample test strip can be given to the contractor/owner upon request.

**3.3.3** Procedure in the event of Destructive Test Failure: Cut additional field samples for testing. In the case of a field production seam, the samples must lie a minimum of ten 10 feet (3m) in each direction from the location of the failed sample. Perform a field test for peel strength. If these field samples pass, then laboratory samples can be cut and forwarded to a laboratory for full testing.

If the laboratory samples pass then reconstruct the seam between the two 2 passing sample locations. Heat tack the overlap along the length of the seam to be reconstructed and extrusion weld. Vacuum test the extrusion weld. If either of the samples fail then additional samples are taken in accordance with the above procedure until two 2 passing samples are found to establish the zone in which the seam should be reconstructed.

All passing seams must be bounded by two 2 locations from which samples passing laboratory destructive tests have been taken. In cases of reconstructed seams exceeding



150 feet (45m) a destructive samples must be taken and pass destructive testing from within the zone in which the seam has been reconstructed. All destructive seam samples sent to Terrafix Inc's, office shall be numbered and recorded on Terrafix Inc. Form 2 (Destructive Seam Testing) as enclosed.

**3.4** Quality Assurance Laboratory Testing: The remaining destructive sample may be sent to a laboratory and will be tested in "Seam Strength" and "Peel Adhesive" [ASTM D6392 with specimen 0.5 inches wide tested at two (2) inches per/minute]. Five (5) specimens shall be tested for each test method with data recorded. Four (4) out of the five (5) specimens must pass and not have more then 10% Film Tear Bond for each test in order for the seam to be considered acceptable.

#### 4.0 Defects and Repairs

**4.1** Concept: Terrafix Inc. Project Superintendent shall conduct a detailed walk through and visually check all seams and non-seam areas of the geomembrane for defects, holes, blisters, and signs of damage during installation. All other Terrafix Inc., installation personnel shall, at all time, is on the lookout for any damaged area. Damaged area shall be marked and repaired.

## 4.2 Repair Procedures

Any portion of the geomembrane showing a flaw, or failing a destructive or non-destructive test shall be repaired. Several procedures exist for repair and Terrafix Inc. Project Superintendent shall make the decision as to the appropriate repair procedure.

Procedures available for repair:

- **4.2.1** Patching: Used to repair large holes, tears and destructive sample locations. All patches shall extend at least six (6) inches (147mm) beyond the edges of the defect and all corners of patches shall be rounded.
- **4.2.3** Grinding and welding: Used to repair sections of extruded seams.
- **4.2.4** Spot welding or seaming: Used to repair small tears, pinholes or other minor localized flaws.
- **4.2.5** Capping: Used to repair lengths of failed extruded seams. Removal of a bad seam and replacement with a strip of new material seamed into place.



**4.3** Verification of Repairs: Every repair shall be non-destructively tested using the methods set out in Paragraph 3.4. Repairs that pass the non-destructive test shall be deemed adequate. Large repairs may require destructive test. Repair test results shall be logged on Terrafix Inc. Form 4 (Repair Report) as enclosed.



# **Important Note**

The Terrafix Installation and Quality Control Manual is intended as a guideline only for geomembrane installation. This manual does not supercede the project specific specification.



# **Appendix A- Field Forms and Procedures**

# Form 1: Pre-Weld Qualification Testing

Project: QC Technician:															
DATE	TIME	MACH #	MACH TEMP	PRE-HEAT /SPEED	TECH	SHEAR (LB. / IN) REQUIREMENT:60 LB. / IN			PEEL (LB. / IN) REQUIREMENT: _50/44_ LB. / IN					Temperature Winds	COMMENTS
						/	/	/	/	/	/	/	/		
						/	/	1	/	/	/	/	/		
						/	/	1	/	/	/	/	/		
						/	/	1	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	/	/	/	/	/	/		
						/	/	,	/	/	/	/	,		
						,	,	,	,	,	,	,	,		



Form 2: Seam Recording and Air Test

JE vironi	mento	l technologi	ogy inc.	B			Seam Recording and Air Test						
roject:								QC Tec	hnician:				
ANFI #		SEAM	TECH	MACH #	TEST			PRESSURE		LOCATION			
	"	DATE	izon	TIACIT #	DATE	START	FINISH	START	FINISH	ESCRITON			
	ect:		ect: ANFI # SEAM	ect: ANFI # SEAM TECH	ANEL # SEAM TECH MACH #	ect:  ANEL # SEAM TECH MACH # TEST	ect:  ANEL # SEAM TECH MACH # TEST TEST	ect:  ANEL # SEAM TECH MACH # TEST TEST TIME	OC Tect           ANFI #         SEAM         TECH MACH #         TEST TIME         PRES	QC Technician:  ANFI # SEAM TECH MACH # TEST TIME PRESSURE			



Form 3: Repair Report

Project:							QC Technician:			
REPAIR #	PANEL #		#	REPAIR DATE	MACH #	TECH	LOCATION	V.T. TECH	V.T. DATE	



Form 4: Destructive Seam Testing

Project:									QC Techni					
SAMPLE	DATE	PA	NEL #	MACH #	ГЕСН		SHEAR (LB. / IN) UIREMENT: LB. / IN		ŗ	PEEL (LB. / IN REQUIREMENT:			N	Locations
						/	1	/	/	/	/	1	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/	/	/	/	
						/	/	/	/	/		,	/	
						,	,	,	,	,		,	,	



Form 5: Daily Production Report

Terrafix Daily Production Report												
environment	al fechnology	inc.										
Date:				Project:								
Site Day:				Client:								
				Manhours								
Employee	Hours	In	Out	Lunch	Travel	Job/Task						
Total:												
Production												
Material	m2	Wide	Long	RLS/PNLS	Comments							
Total:												
				Notes								
				Expenses								
Descri	ption	Amount	HST	Total		Notes						
	·											
Total:	Total:											
				Summary								
Man Hours	Total M	1aterials	m	2/mhr		Expenses (\$)						



### **Appendix B - Notes On Filling in Documents**

1. When referencing a location on your paperwork, always use base points that are independent of your paperwork.

Example.



2. When providing panel dimensions in your field book and on the drawing, remember to provide all of the required dimensions and notes. (If there is no room on a single page, start a new one and reference back to the original notes.)



www.ghd.com

